0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

开发相容性高的石榴石-液态电解质界面

清新电源 来源:深水科技咨询 2023-01-11 11:04 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、引言

混合固液电解质概念是解决固态电解质和锂负极/正极之间界面问题的最佳方法之一。然而,由于高度反应性的化学和电化学反应,在界面处形成的固液电解质层在较长的循环期间会降低电池容量和功率。

二、正文部分

01 成果简介

近日,来自加拿大卡尔加里大学Venkataraman Thangadurai团队通过AlCl3路易斯酸和氟代碳酸亚乙酯作为添加剂结合在含有碳酸锂的传统LiPF6电解质中,证明了一种合成方法。

这种电解质设计通过添加AlCl3引发碳酸氟乙烯酯聚合,并且还可以在Li7La2.75Ba0.25Zr1.75Ta0.25O12石榴石型结构化固态电解质、Li负极和LiNi0.6Mn0.2Co0.2O2正极的表面上形成机械性能好且离子导电的富Al界面。得益于这种方法,组装的锂对称电池表现出4.2 mA cm−2的极高临界电流密度,并且在25°C下在0.5 mA cm−2中稳定的长循环超过3000小时。

组装的混合型全电池在1C下200次循环表现出92.2%的高比容量保持率。这项工作为开发安全、持久和高能混合固态锂金属电池开辟了新方向。

02 正文导读

dc9623ac-8e58-11ed-bfe3-dac502259ad0.png

【图1】a)Li7La2.75Ba0.25Zr1.75Ta0.25O12(LLBZT)的XRD衍射数据的Rietveld精修。b)使用VESTA软件以多面体表示LLBZT(空间群Ia-3d)的晶体结构。c)常规液态电解质(LE)和制备的d)AlCl3与碳酸氟乙烯酯(FEC)在LiPF6-EC/DEC电解质(AFLE)中混合电池中界面形成的示意图。AlCl3/FEC、AlCl3/FEC/LiPF6、FEC和FEC/LiPF5的傅里叶变换红外光谱(FT-IR)变化e)C–F、F)C=O谱g)在AFLE中与FEC和AlCl3的反应机理。

dca5e364-8e58-11ed-bfe3-dac502259ad0.png

【图2】a)在空气中25°C条件下,LLBZT的Nyquist图,带有对称Au阻挡电极的双探针(2P)装置。b)四探针(4P)电化学阻抗谱(EIS)装置示意图,NMC622作为对电极(CE),Au作为参比电极(RE),LE或AFLE作为液态电解质,LLBZT固态电解质。c)AFLE-LLBZT中4P设置的Nyquist图。d)图解说明离子穿过液态电解质-固态电解质相边界的传输,对应的阻抗与等效电路。在室温下测量e)AFLE-LLBZT和f)LE-LLBZ界面的长期4P阻抗稳定性。g)AFLE-LLBZT(低频半圆)与AFLE-LLLBZT之间界面电阻电容变化百分比的比较分析。(h)LE-LLBZT和i)AFLE-LLBJT之间初始和60小时稳定性后的激活屏障示意图。j)混合电解质的Arrhenius图。

dcb3efae-8e58-11ed-bfe3-dac502259ad0.png

【图3】LLBZT在每个电解质介质中暴露于a–c)LE电解质和e–g)AFLE电解质的初始小时至60小时的俯视SEM图像。LLBZT在(d)LE和h)AFLE电解质中的EDS元素图谱显示了C-K、O-K、F-K、P-K、Al-K元素的分布。LE-SLEI中i)C-1s和j)F-1的XPS光谱;k)从AFLE-SLEI的表面和溅射时间的增加。SLEI中存在的元素的原子%,从表面开始,然后在m)LE和n)AFLE中的不同溅射时间(60、120、360秒)。

dcc2e0ea-8e58-11ed-bfe3-dac502259ad0.png

【图4】恒流锂沉积/剥离剖面,a)AFLE-LLBZT(红色曲线)、FLE-LLBZT(棕色曲线)、LE-LLBZT(粉色曲线)和原始LLBZT电解质,电流密度逐步增加。b)AFLE-LLBZT对称电池的可逆恒电流循环,每个电流密度下50次循环。c)在0.5 mA cm−2的恒定电流密度下,使用AFLE-LLBZT(红色曲线)和LE-LLBZ(黑色曲线)电解质对Li沉积/剥离剖面进行长期恒电流循环。SEM图像突出了d)LE/Li,e)FLE/Li,f)AFLE/Li与g)新鲜LE金属相比的形态变化。

dcd30128-8e58-11ed-bfe3-dac502259ad0.png

【图5】Li||Cu的电化学表征显示了a)LE-LLBZT、b)FLE-LLBZT和c)AFLE-LLBDT的电压分布,相应的SEM图像d–f)。LE-SEI中i)C-1s和h)F-1的XPS光谱;i)AFLE-SEI中的F-1s光谱和j)Al-2p从表面开始,然后随着溅射时间的增加。在k)AFLE-SEI和l)LE-SEI中,在不同的溅射时间(60、120、360秒)。

dce27900-8e58-11ed-bfe3-dac502259ad0.png

【图6】a)长期循环性能和相应的b)Li||NMC622电池在LE-LLBZT和AFLE-LLBZT中在0.5 C下的充/放电电压曲线C)在AFLE-LLLBZT电解质中在0.5 C下从5个循环到120个循环的电化学阻抗谱测量。d)AFLE-LLBZT中Li||NMC622电池在1 C下的循环性能。

dcf11000-8e58-11ed-bfe3-dac502259ad0.png

【图7】在c,d)AFLE和e,f)LE中循环100次后,a,b)新鲜NMC622正极的俯视扫描电子显微镜(SEM)图像。g)新鲜NMC622正极,以及在h)AFLE,i)LE中100次循环后的示意图。AFLE-CEI中j)Al-2p和k)F-1s光谱的XPS光谱从表面观察,并随着溅射时间的增加。在l)AFLE-CEI中,在不同的溅射时间(60、120、360秒),CEI中存在的元素的原子百分比。

03 总结和展望

本研究证明了改进的非水系液态电解质设计,以在LLBZT石榴石和液态电解质之间产生含Al2O3的SLEI,从而解决了与HSSLMB开发相关的关键问题。该策略为稳定SEI(负极侧)和CEI(正极侧)界面提供了双重思路。含有Al2O3的SEI可有效防止锂金属负极的腐蚀和液态电解质的耗尽,从而在3000小时内实现稳定的长期循环,锂对称电池中的最高CCD为4.2 mA cm−2,是报道的混合锂电解质电池中最高的。

组装的混合全电池在稳定的200次循环后在1 C下表现出92.2%的高比容量保持率,证明了混合电解质概念的可行性。这项工作可能是一系列研究中的第一项,以抑制常规有机电解质和石榴石型SE界面之间的副反应,并协同稳定负极和正极界面,从而显著改善电池性能。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 等效电路
    +关注

    关注

    6

    文章

    295

    浏览量

    33728
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21236
  • 锂金属电池
    +关注

    关注

    0

    文章

    145

    浏览量

    4895

原文标题:AEM:开发相容性高的石榴石-液态电解质界面

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MLPC的抗振性能如何与液态电解质电容比拟

    MLPC(固态叠层高分子电容)的抗振性能显著优于液态电解质电容 ,其核心优势体现在结构稳定性、材料特性及实际应用表现三方面,具体分析如下: 一、结构稳定性:无液态泄漏风险,振动下结构完整 固态
    的头像 发表于 11-22 10:49 577次阅读
    MLPC的抗振性能如何与<b class='flag-5'>液态</b><b class='flag-5'>电解质</b>电容比拟

    巴西研究团队推进钠离子电池电解质计算研究

    圣卡洛斯化学研究所博士后研究员、论文通讯作者Tuanan da Costa Lourenço表示:“这项工作的主要目的是评估增加基于质子型离子液体的电解质及其含有非质子型离子液体的类似物中钠盐
    的头像 发表于 11-12 16:19 100次阅读
    巴西研究团队推进钠离子电池<b class='flag-5'>电解质</b>计算研究

    固态电容和电解电容的优劣势对比,怎么选?

    固态电容和电解电容(通常指液态电解电容)的主要区别在于 介电材料(电解质)的不同 ,这导致了它们在性能、寿命、应用和价格上的一系列差异。
    的头像 发表于 10-24 18:15 1410次阅读

    突破固态聚合物电解质:像拼图一样组装分子,打造安全高压锂电池

    【美能锂电】观察:为比能锂金属电池开发安全且耐高压的固态聚合物电解质,是当前电池研究的重要方向。传统液态锂电池因易燃易爆的特性,给电动汽车等应用带来了安全隐患。同时,石墨负极体系也限
    的头像 发表于 09-30 18:04 2641次阅读
    突破<b class='flag-5'>性</b>固态聚合物<b class='flag-5'>电解质</b>:像拼图一样组装分子,打造安全高压锂电池

    破解固态锂电池界面困局:聚合物从复合电解质、粘结剂到保护层的三大核心作用解析

    面临一个核心挑战:固体界面问题。电极与固态电解质之间的固-固接触导致界面阻抗、接触稳定性差,以及严重的界面副反应。本文系统阐述了聚合物材料
    的头像 发表于 09-18 18:02 1004次阅读
    破解固态锂电池<b class='flag-5'>界面</b>困局:聚合物从复合<b class='flag-5'>电解质</b>、粘结剂到保护层的三大核心作用解析

    固态电解电容相比液态电解电容有哪些优势?

    导电高分子(如PEDOT)或金属氧化物(如MnO₂)作为电解质,导电远高于液态电解质的离子导电方式。其ESR可低至1-5mΩ(钽电容甚至 100mΩ。低ESR显著减少电容在高频充放电
    的头像 发表于 09-15 14:50 665次阅读
    固态<b class='flag-5'>电解</b>电容相比<b class='flag-5'>液态</b><b class='flag-5'>电解</b>电容有哪些优势?

    哪个是有极性的电解电容?

    电解电容的基本概念 电解电容是一种通过电解质实现电容值的电子元件,广泛应用于电源滤波、信号耦合等场景。其核心特点是通过阳极金属的氧化膜作为电介质,配合
    的头像 发表于 09-01 16:08 780次阅读

    液态电解电容与固态电解电容材质的差别

    液态电解电容与固态电解电容在材质上的核心差别在于 介电材料 和 阴极材料 ,这一差异直接决定了两者在性能、应用场景及可靠上的显著不同,具体如下: 1. 介电材料:氧化铝层相同,但
    的头像 发表于 08-13 16:35 913次阅读
    <b class='flag-5'>液态</b><b class='flag-5'>电解</b>电容与固态<b class='flag-5'>电解</b>电容材质的差别

    锂离子电池电解质填充工艺:技术原理与创新实践

    在锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全。美能锂电作为新能源制造领域的创新引领者,始终以精密工艺为基石,在电解质填充技术的研发与应用中实现了从
    的头像 发表于 08-11 14:53 640次阅读
    锂离子电池<b class='flag-5'>电解质</b>填充工艺:技术原理与创新实践

    超声波焊接有利于解决固态电池的枝晶问题

    表面溅射了Cu/Ag金属层,亦可提供电解质与锂金属的界面相容性。 ✦ 成果介绍 ✦ 天津理工大学毛智勇教授和董辰龙副教授以石榴石电解质(Li6.5La3Zr1.5Ta0.5O 12
    发表于 02-15 15:08

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处锂沉积行为的影响

    清华新闻网2月7日电 硫化物固态电解质Li5.5PS4.5Cl1.5具有锂离子电导率(≈10 mS/cm)、机械加工性能优异、与金属锂负极的化学兼容良好等优点,是构建具有高能量密度与高安全
    的头像 发表于 02-14 14:49 735次阅读
    清华大学:自由空间对硫化物固态<b class='flag-5'>电解质</b>表面及内部裂纹处锂沉积行为的影响

    陈军院士团队最新Angew,聚合物电解质新突破

    研究背景 固态锂金属电池(SSLMBs)因其的能量密度和优异的安全性能在能源存储领域受到广泛关注。然而,现有固态电解质(SSEs)普遍存在离子传导差、电极界面稳定性不足等问题,极大
    的头像 发表于 01-06 09:45 2104次阅读
    陈军院士团队最新Angew,聚合物<b class='flag-5'>电解质</b>新突破

    镁合金牺牲阳极与电解质接触不良的原因

    一、埋设深度不足 镁阳极的埋设深度决定了其与周围电解质的接触面积和接触质量。如果埋设深度不足,阳极可能与电解质的接触不良,导致保护电流分布不均,影响保护效果。特别是在地下水位较低或土壤干燥的区域
    的头像 发表于 01-02 21:00 526次阅读
    镁合金牺牲阳极与<b class='flag-5'>电解质</b>接触不良的原因

    一种薄型层状固态电解质的设计策略

    研 究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度锂金属电池安全性问题的有效途径。为了开发性能优异的全固态锂金属电池(ASSLMB),SSE通常需要具备均匀且快速的锂离子
    的头像 发表于 12-31 11:21 1504次阅读
    一种薄型层状固态<b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于电压锂金属电池

    研究背景 基于镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在电压充电时,镍正极在高度去锂化状态下,Ni4+的表面反应显著增强,这会催化正极与
    的头像 发表于 12-23 09:38 1735次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于<b class='flag-5'>高</b>电压锂金属电池