0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

单晶富镍NCM容量衰减机制

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-12-05 11:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

由于具有较高的能量密度,富镍层状氧化物有望成为下一代电动汽车锂离子电池(LIB)的正极材料。然而,当提高层状正极中的Ni含量时,在深度充电状态下由各向异性晶格收缩引起的结构不稳定性会沿颗粒边界产生局部应力集中,并发展成微裂纹,使电解液渗入并侵蚀二次粒子内部,导致严重的副反应。单晶正极不产生微裂纹,最大限度地减少了副反应,改善了循环和热稳定性。但单晶正极中的大粒径会增加锂的扩散长度,导致动力学缓慢。减小粒径会增加比表面积,加剧副反应的发生。迄今为止报道的大多数单晶正极镍含量低于90%,因为高镍需要降低锂化温度,使得难以通过高温合成单晶。因此,对于高镍单晶正极容量衰减机制的探究也鲜有报道。

【工作简介】

近日, 韩国汉阳大学的Chong S. Yoon和Yang-Kook Sun等人系统地比较了一系列粒径约3 μm的单晶富镍Li[NixCoyMn1-x-y]O2(NCM)正极(x=0.7、0.8和0.9)和相同镍含量的多晶NCM。单晶NCM正极虽然具有较高的抗微裂纹性能,但其容量和循环稳定性方面均不如多晶NCM正极。原位XRD和TEM分析表明,在循环过程中,单晶NCM正极中的锂离子浓度在空间上变得不均匀;这一现象随着倍率和镍含量的增加而加剧,导致在单一正极颗粒内存在晶胞尺寸不同的相。这两相的共存引起不均匀应力,产生结构缺陷,阻碍锂离子的扩散,最终导致容量迅速衰减。相关研究成果以“Capacity Fading Mechanisms in Ni-Rich Single-Crystal NCM Cathodes”为题发表在国际顶尖期刊ACS Energy Letters上。

【内容详情】

为了制备单晶正极,将3 μm大小的氢氧化物前驱体粉末与LiOH均匀混合,并分别在850、900和950℃下煅烧10小时以获得S-NCM90、S-NCM80和S-NCM70。为了获得多晶P-NCM正极,将10 μm的氢氧化物前体粉末与LiOH均匀混合,并分别在750、770和810℃下煅烧10小时,获得了P-NCM90、P-NCM80和P-NCM70。图 1a表明,P-NCM90正极的粒径分布较窄,平均粒径为9.71 μm(D50),而S-NCM90正极的粒径分布相对较宽,平均粒径为3.08 μm (D50)。XRD谱表明,它们都具有六方α-NaFeO2型结构,属于R3̅m空间群,没有杂质。S-NCM和P-NCM正极颗粒的形貌显示,S-NCM正极颗粒为多边形微米颗粒;每个颗粒由一个或几个单颗粒组成。相比之下P-NCM正极颗粒由纳米级颗粒组成,这些颗粒紧密堆积形成近乎球形的次级颗粒;这些次级粒子显示出良好的单分散性。

445a52c0-744a-11ed-8abf-dac502259ad0.png

图 1、原始S-NCM90和P-NCM90正极的(a)粒度分布,(b)XRD,以及(c)S-NCM90和(d)P-NCM90的SEM图像。

图 2a-c显示,两种正极的容量随着Ni含量的增加而增加。尽管P-NCM和S-NCM正极实现了相似的初始充电容量,但S-NCM正极的放电容量低于P-NCM正极。与P-NCM相比,S-NCM正极的库仑效率(CE)更低。图 2d-f显示,S-NCM和P-NCM正极初始容量之间的差异随着Ni含量的增加而增加。S-NCM 正极较差的循环性能主要归因于其形态;与具有三维快速扩散晶界网络的P-NCM正极颗粒不同,S-NCM正极颗粒中的锂离子主要通过体扩散迁移,导致电化学反应缓慢。

44d66496-744a-11ed-8abf-dac502259ad0.png

图 2、S-NCM和P-NCM正极的电化学性能:(a-c)0.1 C下的初始充放电曲线和(d-f)0.5 C下的循环性能。具有(g)P-NCM90和(h)S-NCM90正极电池的差分容量(dQ dV-1)曲线和H2-H3相变氧化还原峰。

P-NCM70和P-NCM80正极在100次循环后容量保持率均为96% 以上,而P-NCM90正极经历了相对显着的容量损失,保留了其初始容量的87.4%。S-NCM正极的循环稳定性随着Ni含量的增加而逐渐恶化;S-NCM70、S-NCM80和S-NCM90正极在100次循环后容量保持率分别为91.1%、85.0%和80.7%。在深度充电状态下,富镍层状正极中的H2-H3相变导致晶格结构的各向异性收缩/膨胀。由此产生的结构应力破坏了多晶正极颗粒的机械稳定性,因为局部累积的应力通过微裂纹成核沿晶界释放。各向异性体积变化的严重程度随着Ni含量的增加而增加;因此,具有高Ni正极更容易产生微裂纹,从而使电解质渗透到正极颗粒并损坏其内表面。图2g显示,P-NCM90正极的H2-H3峰强度随循环降低,且极化变大,表明由于H2-H3相变引起的严重体积变化,P-NCM90正极颗粒中形成了大量微裂纹,随之而来的表面杂质的形成使阻抗增加,加速了容量衰减。相比之下,S-NCM90正极的H2-H3峰衰减速度不如P-NCM90正极,尽管其循环稳定性较差,但在循环过程中没有任何位置变化,表明S-NCM和P-NCM正极的容量损失机制不同。

无论S-NCM正极中的Ni含量如何,荷电S-NCM正极颗粒中微裂纹的发生率很低。尽管大多数荷电S-NCM70和S-NCM80正极颗粒保持完整,但在一些S-NCM90正极颗粒中观察到一些晶内裂纹,放大图像证实了晶内裂纹的存在。S-NCM正极颗粒晶内开裂主要源于颗粒内锂浓度差异引起的不均匀结构应力。通过触发层平面的滑动使单晶内的裂纹成核,从而释放局部拉伸/压缩应力和剪切应力。在放电过程中,随着结构应力的消失,微裂纹闭合。经过100次循环后,虽然可以看到一些裂纹,但大多数放电S-NCM90正极颗粒几乎完好无损,尽管反复出现裂纹成核和闭合,但仍保持其原始形状。相比之下,几乎在所有荷电P-NCM90正极颗粒中都观察到了晶间裂纹。微裂纹沿次级粒子晶界蔓延,使相邻的初级粒子分离。长循环期间的重复成核会破坏P-NCM90颗粒的机械稳定性,从而产生微裂纹,即使在二次颗粒完全放电的状态下,这种微裂纹也会持续存在。S-NCM90和P-NCM90正极颗粒的晶内和晶间开裂行为之间最关键的区别分别在于后者使颗粒内部暴露于电解质中,加剧副反应。

如图3g所示,P-NCM90正极的暴露面积随着充电状态增加到4.17 V逐渐增加,然后在4.17和4.3 V之间急剧增加,这是由于H2– H3相变造成。相比之下,尽管S-NCM90正极的表面积最初高于P-NCM90正极,但其表面积在充电至4.5 V时几乎没有变化。S-NCM和P-NCM正极的电荷转移电阻(Rct)的变化明显不同。P-NCM90正极颗粒的晶间开裂允许电解液沿晶界渗入,由此产生的表面降解导致杂质层的积累。P-NCM90正极的Rct增加导致H2-H3峰强度降低和极化增加。相比之下,S-NCM90正极的Rct在循环过程中几乎没有变化。

44f922b0-744a-11ed-8abf-dac502259ad0.png

图 3、初始充电至4.5 V(a, b)S-NCM90,(d, e)P-NCM90正极和100个循环后放电(c)S-NCM90,(f)P-NCM90正极的横截面SEM图像。(g)P-NCM90和S-NCM90正极的比表面积随充电状态的变化。(h)S-NCM和P-NCM正极在循环过程中的电荷转移电阻(Rct)的变化。

尽管单晶正极的Rct低,但表现出相对较差的循环稳定性。图4a和b的原位XRD显示了两个系列的叠加(003)峰,揭示了P-NCM90和S-NCM90正极在4.15和4.5 V之间的相位演化。P-NCM90正极的(003)峰平滑地移动到一个更高的角度,强度和宽度的变化有限。相比之下,S-NCM90正极的(003)峰强度显着降低,并且由于在~4.2 V处存在多个相,对应于H2-H3相变,峰变得不对称。超过4.2 V,(003)峰随着电压的增加而部分恢复其强度和形状,直到4.5 V。相变期间强度和对称性的显着变化意味着由结构变形引起的不均匀应变。图 4c中P-NCM90正极的解卷积(003)峰表明在4.2 V下两相共存。对于S-NCM90正极,在4.19 V时观察到两相共存,甚至在4.3 V以上时仍持续存在,此时H2-H3转变应该完成,只存在单相。S-NCM90正极的原位XRD数据表明H2-H3相变的缓慢动力学可能会在正极内产生不均匀的锂分布。结构变形在高倍率下更为明显。图 4e-h显示,尽管倍率很高,但P-NCM90正极的(003)峰在4.14 V以上几乎保持对称的形状,表明H2相转换为H3相的速度相当快。相反,对于S-NCM90正极,即使在4.5 V下,缓慢的相变也会导致H2相残留。此外,S-NCM90正极中的H2相在充电过程中没有移动,因此在4.3 V以上观察到两个明显分离的峰。在4.5 V,两个解卷积峰相距约1°。解卷积(003)峰之间的分离表明S-NCM90正极内锂浓度的不均匀性和随之而来的非均匀应变。在0.5 C充电期间,S-NCM70正极的峰在4.15和4.5 V之间变宽且强度降低,在18.4°处仍有一个残余峰。S-NCM80正极的(003)峰在0.5 C时比0.2 C时宽得多。这些结果表明,单晶正极在高倍率下经历更严重的结构不均匀性,这可能归因于它们的长扩散路径,并且随着Ni分数接近90%,结构不均匀性导致局部内应变越来越严重。

4517583e-744a-11ed-8abf-dac502259ad0.png

图 4、在4.15-4.5 V电压范围内,原位XRD中(003)峰的重叠和解卷积:(a,c)P-NCM90在0.025 C和(e,g)0.5 C,(b,d)S-NCM90在0.025 C和(f,h)0.5 C,(i)S-NCM70在0.5 C,和(j)S-NCM80在0.5 C。

根据相应的[100]区轴电子衍射图,在荷电S-NCM90正极表面(i)和中心(ii)之间的区域获得了高分辨率TEM图像,该区域与锂离子扩散路径方向一致。图 5c显示,计算出的c轴晶格参数从颗粒表面向中心增加。TEM结果表明,荷电的S-NCM90正极颗粒由具有不同晶格参数的区域组成,这些区域具有不同的锂离子浓度梯度分布。正极颗粒内的不均匀性产生不均匀的空间应力,通过电化学反应中的晶面滑动和颗粒破裂产生结构缺陷而释放该应力。重复循环会加剧富镍S-NCM正极中锂离子浓度和应变的空间不均匀性,并导致S-NCM正极的容量衰减。

459de124-744a-11ed-8abf-dac502259ad0.png

图 5、(a)S-NCM90正极粒子在0.5 C下充电至4.3 V的TEM图像和(b)来自(i)和(ii)区域的部分电子衍射图。(c)(a)中黄虚线位置处的c轴晶格参数。

【结论】

与易受晶间微裂纹影响的P-NCM正极不同,S-NCM正极即使在深度充电状态或重复循环下也能抵抗机械断裂。然而,由于锂离子扩散路径有限,S-NCM正极的电化学性能在容量和循环稳定性方面不如P-NCM正极。S-NCM和P-NCM正极的电化学性能差异随着Ni含量的增加而增加。P-NCM正极的快速容量衰减主要归因于微裂纹的形成、电解质侵蚀,导致类NiO岩盐相的积累。相比之下,由于S-NCM正极的锂离子扩散路径有限,锂的分布在循环过程中往往在空间上变得不均匀,高倍率和高镍加剧了这种趋势,导致两相共存。原位XRD和TEM观察到荷电S-NCM90正极的结构不均匀性会引起不均匀的应力,从而导致结构缺陷,限制Li+扩散动力学,最终导致容量衰减。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80229
  • 正极
    +关注

    关注

    0

    文章

    55

    浏览量

    10732
  • 单晶
    +关注

    关注

    1

    文章

    63

    浏览量

    14482

原文标题:单晶富镍NCM容量衰减机制

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【技术深剖】实测数据说话:永铭LKC如何实现-55℃容量衰减低至11.62%?对标日系、台系高压铝电解

    引言各位工程师朋友,在电源设计中最头疼的问题之一,莫过于低温环境下电容因容量衰减而"掉链子"。今天,我们就通过一组真实的对比测试数据,深入剖析永铭LKC系列450V100μF电容
    的头像 发表于 12-01 10:37 421次阅读
    【技术深剖】实测数据说话:永铭LKC如何实现-55℃<b class='flag-5'>容量</b><b class='flag-5'>衰减</b>低至11.62%?对标日系、台系高压铝电解

    备用电池的容量和环境兼容性对电能质量在线监测装置的精度有何影响?

    (ADC 芯片、基准电压源)的工作基准不偏移,最终影响测量误差是否符合 A 级 / S 级精度要求。具体影响机制、误差表现及差异如下: 一、备用电池容量对精度的影响:核心是 “供电持续稳定” 容量本身不直接决定精度,但
    的头像 发表于 11-27 18:00 1151次阅读
    备用电池的<b class='flag-5'>容量</b>和环境兼容性对电能质量在线监测装置的精度有何影响?

    Keithley 6514静电计在单电芯微法级容量衰减监测中的应用

    随着电子设备的普及和性能要求的提升,电池作为其核心动力源,其性能监测显得尤为重要。特别是在单电芯微法级容量衰减监测领域,精确的测量工具和方法成为了研究的重点。本文将探讨如何使用Keithley
    的头像 发表于 08-08 16:46 585次阅读
    Keithley 6514静电计在单电芯微法级<b class='flag-5'>容量</b><b class='flag-5'>衰减</b>监测中的应用

    铝电解电容会容量衰减下降的原因

    铝电解电容容量衰减下降主要由电解液蒸发、电极腐蚀、氧化膜增厚、环境因素及制造工艺缺陷等因素导致,以下是具体分析: 1、电解液蒸发 :电解液是铝电解电容的核心介质,其蒸发是容量衰减的主因
    的头像 发表于 08-01 15:36 810次阅读

    如何解决太诱陶瓷电容在高温环境下的容量衰减问题?

    陶瓷电容在高温环境下容量衰减是行业普遍现象,其核心原因在于材料特性与温度的相互作用。结合材料科学原理与工程实践,可通过以下系统性方案实现容量稳定性优化: 一、材料体系优化:从根源提升高温稳定性 1
    的头像 发表于 07-11 15:25 362次阅读
    如何解决太诱陶瓷电容在高温环境下的<b class='flag-5'>容量</b><b class='flag-5'>衰减</b>问题?

    利用吉时利2602B双通道同步测量解析锂电内阻与容量衰减关联性

    锂离子电池因其高能量密度、长循环寿命和环境友好性,在消费电子、电动汽车和储能系统等领域得到了广泛应用。然而,随着电池循环次数的增加,其容量会逐渐衰减,内阻也会相应增加,这对电池性能和使用寿命产生
    的头像 发表于 07-08 17:32 406次阅读
    利用吉时利2602B双通道同步测量解析锂电内阻与<b class='flag-5'>容量</b><b class='flag-5'>衰减</b>关联性

    为什么铝电解电容会容量衰减下降?

    为什么铝电解电容会容量衰减下降?铝电解电容作为电子设备中不可或缺的储能元件,其容量衰减问题长期困扰着工程师与制造商。从消费电子到工业电源,容量
    的头像 发表于 07-02 15:29 585次阅读

    为什么电解电容会随着使用时间容量下降?

    电解电容作为储能与滤波元件,广泛应用于电源电路中,但其容量随使用时间逐渐衰减的特性是制约长期可靠性的关键因素。容量下降不仅影响电路性能,还可能导致系统失效。本文从材料老化、电化学机制
    的头像 发表于 06-25 15:46 899次阅读

    单晶片电阻率均匀性的影响因素

    直拉硅单晶生长的过程是熔融的多晶硅逐渐结晶生长为固态的单晶硅的过程,没有杂质的本征硅单晶的电阻率很高,几乎不会导电,没有市场应用价值,因此通过人为的掺杂进行杂质引入,我们可以改变、控制硅单晶
    的头像 发表于 05-09 13:58 1061次阅读
    硅<b class='flag-5'>单晶</b>片电阻率均匀性的影响因素

    探秘化学镀金:提升电子元件可靠性的秘诀

    了化学镀金相关小知识,来看看吧。 化学镀金工艺通过化学还原反应,在PCB铜表面依次沉积层和金层。层作为屏障,防止铜扩散,同时提供良好的焊接基底;金层则确保优异的导电性和抗氧化性
    的头像 发表于 03-05 17:06 891次阅读

    具有优越循环性的双重改性的低应变正极软包全电池

    研究背景锂离子电池 (LIB) 阴极材料是高容量层状氧化物 LiTMO2(其中 TM = Ni、Mn、Co)的深入研究主题,特别是在 LiNi0.8Co0.1Mn0.1O2 的背景下
    的头像 发表于 01-07 14:47 2681次阅读
    具有优越循环性的双重改性的低应变<b class='flag-5'>富</b><b class='flag-5'>镍</b>正极软包全电池

    微量多功能添加剂显著提升4.8V正极和硅氧负极电池的超高压性能

     LiNi0.8Co0.1Mn0.1O2, NCM811) 与高容量硅基负极相结合,被认为是高能量密度锂离子电池 (LIBs) 的理想候选者之一。然而,在高含量、高电压和极端温度等苛刻条件工作时,
    的头像 发表于 12-23 09:26 2129次阅读
    微量多功能添加剂显著提升4.8V<b class='flag-5'>富</b><b class='flag-5'>镍</b>正极和硅氧负极电池的超高压性能

    金属表面处理技术 镀行业的未来发展趋势

    一、镀技术概述 镀技术是通过电解作用在金属表面沉积一层的过程。这种技术可以提高金属的耐腐蚀性、耐磨性、硬度和美观性。镀层通常具有均匀、致密和光滑的特点,适用于各种工业应用,如汽
    的头像 发表于 12-10 14:48 3119次阅读

    处理工艺步骤 镀与镀铬的区别

    处理工艺步骤 镀是一种表面处理技术,用于提高金属零件的耐腐蚀性、耐磨性和装饰性。以下是镀的基本工艺步骤: 前处理 : 除油 :使用化学或电解除油剂去除金属表面的油脂。 除锈 :使用酸洗液去除
    的头像 发表于 12-10 14:43 5219次阅读

    北大潘锋ACS Nano:高熵岩盐表面层稳定超高单晶正极

    ,成为有望商业化的候选材料。然而,其实用化面临两大挑战:锂离子扩散动力学不足和正极/电解液界面恶化。锂离子扩散动力学不足限制了超高单晶的比容量,而界面副反应、过渡金属溶解和表面结构退化等问题则缩短了材料的使
    的头像 发表于 12-10 10:32 2072次阅读
    北大潘锋ACS Nano:高熵岩盐表面层稳定超高<b class='flag-5'>镍</b><b class='flag-5'>单晶</b>正极