0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

芯片制程到3nm后如何突破良率难题?

荷叶塘 来源:电子发烧友网 作者:程文智 2022-11-30 09:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

(文/程文智)三星电子今年7月25日在韩国京畿道华城园区V1生产线(EUV专用)为采用了新一代全环绕栅极(Gate All Around,简称GAA)晶体管制程节点的3nm芯片晶圆代工产品举行了出厂仪式。才过4个月不到,韩国媒体Naver就爆出,三星3nm制程的良率非常低,不足20%。而且其5nm和4nm节点的良率问题也迟迟没有得到改善。

其实,三星电子从2000年初就已经开始了对GAA晶体管结构的研究。自2017年开始,将其正式应用到3纳米工艺,并于今年6月宣布启动利用GAA技术的3纳米工艺的量产。是全球首家将GAA晶体管结构用于晶圆制造的代工企业。据悉,我国的一家矿机芯片企业PanSemi(磐矽半导体)是三星电子的第一家客户,目前也可能是其唯一的客户。

据报道,三星电子为了解决良率问题,找到了美国的Silicon Frontline Technology,向这家企业寻求帮助。据说目前进展情况还不错。

那么,三星电子在GAA上花的时间超过了20年,为何良率问题迟迟没有得到解决呢?问题究竟出在了哪里?我们先从芯片的最基础单元------晶体管结构的发展说起,然后看看有什么应对之策。

晶体管结构的发展历史

半导体芯片其实是众多晶体管(Transistor)的集合,而晶体管其实就是一个小的开关。一个晶体管就代表了一个0或者1,也就是所谓的一个位元。在20nm以上的制程中,使用的晶体管被称为金属氧化物半导体场效应管(MOSFET:Metal Oxide Semiconductor FET);20nm~3nm,采用的是鳍式场效应晶体管(Fin FET: Fin Field Effected Transistor);3nm以下,采用的则是全环绕栅极场效应晶体管(GAAFET:Gate All Around Field Effect Transistor)。
图示显示了根据晶体管的结构变化而提高的性能和功耗
图:晶体管的结构发展(来源:三星)

为何会如此演进呢?主要是因为晶体管的工作原理,在晶体管内部,科学家定义了一个栅极长度(Gate Length)的概念,这是电子流通的方向,而其短边就是所谓的制程。

原理是在金属栅极上加一个电压来控制电子的导通和关闭。电子能够导通过去就代表1,如果关断则代表0。这个开关就是靠栅极施加电压来造成电场来控制的,可电场的主要影响在接触面上,如果栅极的长度越做越小,粉色的接触面积就会越来越小,当小到一个程度,要关住电子的时候,就会关不住。锁不住的电子就会偷偷溜过去。因此,先进制程中漏电流就会变大。
开关形式的 NMOS 晶体管结构比较: 为栅极 (Gate) 施加一定的电压导通晶体管后,电流会从高电压的漏极流向低电压的源极
图:FinFET晶体管工作原理(来源:三星)

解决这个问题的办法就是增大栅极与电子通道的接触面积,接触面积越大,控制效果越好。所以到20nm以下就改用鳍式场效应晶体管,加电压的时候就变成粉色这部分面积就增加了,所以效果会比较好。电场的作用比较强,可以锁住电子不会漏电。

到了3nm以下,实在太小了,接触面积又不够了,怎么办呢?只好上下左右,统统把它包起来,用栅极把电子通道包起来,成为了GAAFET,这样的控制效果会比较好。

就目前来说,每一家晶圆代工厂大概都是用这样的方式去制作。

良率问题低迷该怎么办?

三星电子这次先于台积电推出3nm制程,但情况并没有好转,良率不足20%,这成本就有点高了。加上此前就由于在4nm和5nm制程良率无法得到改善,而让大客户高通英伟达等大客户转单台积电了。此次要是还不能解决良率问题,可能大客户就此失去了。

为了能够更好地解决良率问题,三星电子此次找上了美国厂商Silicon Frontline Technology,让他们帮忙协助其提高3nm GAA结构的良率。

根据Silicon Frontline Technology官网信息,该公司位于加利福尼亚州圣何塞,主要提供半导体设计和验证解决方案。该公司为布局后验证提供有保证的准确和有保证的快速电阻电容ESD 和热分析,其产品已被70多家客户使用,其中包括全球前25家半导体供应商中的12家,得到领先代工厂的认可和使用,并已用于500多种设计中。而且,客户已经使用他们的技术解决了10nm、14nm、28nm、40nm、ADC、Serdes、敏感模拟电路、图像传感器、存储器、定制数字设计和电源设备的问题。

其主要的经验在于为晶圆厂提供静电放电(ESD)预防技术,而静电放电是晶圆生产过程中产生缺陷的主要原因,据悉也是三星3nm GAA技术的良率过低的重要原因之一。Silicon Frontline Technology公司已经藉由水质和静电放电(ESD)预防技术降低生产过程中的缺陷,以提高晶圆的生产良率。

虽然三星号称已经透过整合其合作伙伴使用的技术获得了积极成果,但实际成果还需要在未来几个月内持续观察。

据了解,目前市面上所做的失效分析中,90%以上的失效都是静电放电所造成的。根据电测结果,失效模式包含开路、短路或漏电、参数漂移、功能失效等。根据失效原因,失效模式可以分为电力过应、静电放电导致的失效、制造工艺不良导致的失效等。

静电放电是如何产生的呢?在芯片的制造过程中,半导体设备与芯片上的金属层之间,在制造过程中可能会发生静电放电。静电放电失效可以归结为两种情形,一是静电放电直接作用在了芯片上;二是静电放电干扰了生产的设备正常运行,或者是干扰了外部电路环境。
图形用户界面, 应用程序描述已自动生成
图:充电诱导损伤

上图就是所谓的充电诱导损伤(CID,Charging Induced Damage),就是当芯片在生产过程中,跟半导体设备接触或者接近,可能产生充电诱导损伤,这个图是晶圆表面被静电打坏的照片,仔细放大看,就会发现,实际上就是里面的某一个晶体管被损伤了,如果用显微镜仔细看,就会发现这颗IC基本上被打坏了。
图表描述已自动生成
图:晶圆被静电打坏的剖面图

上图中左图表示的是一个被静电打坏的现象。从侧面看,你会发现,多层金属导线当发生静电打坏的现象,这个地方就会有缺陷,这时候,这颗芯片就坏掉了。通过分析可以发现在晶圆的某些位置,特别容易发生静电放电损坏芯片的现象。比入上图右图所示的红点,就是实验室中,科研人员测得的在某个条件下,某些位置容易打伤芯片。

结语

三星遇到的一直都是良率的问题,所以这次,他们想通过Silicon Frontline Technology提供的静电放电模拟软件协助其找到原因,进而解决良率的问题。如果此次他们能够成功解决良率问题,那么在未来的先进制程竞争中超越台积电。

毕竟台积电目前的3nm制程采用的仍然是FinFET技术,到2025年2nm时,他们才会采用GAAFET技术。而三星此次如果解决了良率问题,那么在2nm竞争时,将会比台积电多出3年的实践经验。因此,两家公司的决战点应该会在2025年之后。





声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片制程
    +关注

    关注

    0

    文章

    57

    浏览量

    5286
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    国产芯片真的 “稳” 了?这家企业的 14nm 制程,已经悄悄渗透这些行业…

    的控制芯片,甚至工业设备的传感器,都能看到它的身影。 之前总担心国产芯片 “产能跟不上、不够高”,但查了下中芯国际的最新动态:2025 年 Q3
    发表于 11-25 21:03

    “汽车智能化” 和 “家电高端化”

    规模化、低成本生产了。​ 要知道,7nm 芯片的设计成本高达 2.978 亿美元(约 21 亿人民币),如果上不去,每颗芯片的成本会贵
    发表于 10-28 20:46

    MediaTek发布天玑座舱S1 Ultra芯片

    MediaTek 3nm 旗舰座舱芯片——天玑 座舱 S1 Ultra 正式亮相,以先进的生成式 AI 技术和卓越的 3nm 制程,带来远超同级的算力
    的头像 发表于 10-23 11:39 619次阅读

    Chiplet与3D封装技术:摩尔时代的芯片革命与屹立芯创的保障

    在摩尔定律逐渐放缓的背景下,Chiplet(小芯片)技术和3D封装成为半导体行业突破性能与集成度瓶颈的关键路径。然而,随着芯片集成度的提高,气泡缺陷成为影响封装
    的头像 发表于 07-29 14:49 724次阅读
    Chiplet与<b class='flag-5'>3</b>D封装技术:<b class='flag-5'>后</b>摩尔时代的<b class='flag-5'>芯片</b>革命与屹立芯创的<b class='flag-5'>良</b><b class='flag-5'>率</b>保障

    台积电2nm超 90%!苹果等巨头抢单

    当行业还在热议3nm工艺量产进展时,台积电已经悄悄把2nm技术推到了关键门槛!据《经济日报》报道,台积电2nm芯片良品率已突破 90%,实现
    的头像 发表于 06-04 15:20 885次阅读

    跨越摩尔定律,新思科技掩膜方案凭何改写3nm以下芯片游戏规则

    电子发烧友网报道(文/黄山明)在半导体行业迈向3nm及以下节点的今天,光刻工艺的精度与效率已成为决定芯片性能与成本的核心要素。光刻掩模作为光刻技术的“底片”,其设计质量直接决定了晶体管结构的精准度
    的头像 发表于 05-16 09:36 5444次阅读
    跨越摩尔定律,新思科技掩膜方案凭何改写<b class='flag-5'>3nm</b>以下<b class='flag-5'>芯片</b>游戏规则

    三星在4nm逻辑芯片上实现40%以上的测试

    较为激进的技术路线,以挽回局面。 4 月 18 日消息,据韩媒《ChosunBiz》当地时间 16 日报道,三星电子在其 4nm 制程 HBM4 内存逻辑芯片的初步测试生产中取得了40% 的
    发表于 04-18 10:52

    台积电2nm制程已超60%

    ,较三个月前技术验证阶段实现显著提升(此前验证阶段的已经可以60%),预计年内即可达成量产准备。 值得关注的是,苹果作为台积电战略合作伙伴,或将率先采用这一尖端制程。尽管广发证券
    的头像 发表于 03-24 18:25 1167次阅读

    台积电加大亚利桑那州厂投资,筹备量产3nm/2nm芯片

    据最新消息,台积电正计划加大对美国亚利桑那州工厂的投资力度,旨在推广“美国制造”理念并扩展其生产计划。据悉,此次投资将着重于扩大生产线规模,为未来的3nm和2nm等先进工艺做准备。
    的头像 发表于 02-12 17:04 937次阅读

    三星电子1c nm内存开发里程碑推迟

    据韩媒报道,三星电子已将其1c nm DRAM内存开发的里程碑时间推迟了半年。原本,三星计划在2024年底将1c nm制程DRAM的
    的头像 发表于 01-22 15:54 926次阅读

    三星1c nm DRAM开发里程碑延期

    (High Bandwidth Memory 4)内存规划方面产生影响。 原本,三星电子计划在2024年12月前将1c nm制程DRAM的提升至70%,这是结束开发工作并进入量产阶
    的头像 发表于 01-22 14:27 1027次阅读

    三星重启1b nm DRAM设计,应对与性能挑战

    nm DRAM。 这一新版DRAM工艺项目被命名为D1B-P,其重点将放在提升能效和散热性能上。这一命名逻辑与三星此前推出的第六代V-NAND改进版制程V6P相似,显示出三星在半导体工艺研发上的持续创新与投入。 据了解,在决定启动D1B-P项目时,三星现有的12
    的头像 发表于 01-22 14:04 1314次阅读

    消息称台积电3nm、5nm和CoWoS工艺涨价,即日起效!

    )计划从2025年1月起对3nm、5nm先进制程和CoWoS封装工艺进行价格调整。 先进制程2025年喊涨,最高涨幅20% 其中,对3nm
    的头像 发表于 01-03 10:35 1020次阅读

    芯片相关知识点详解

    芯片(或成品)是指在芯片制造过程中,从一片晶圆上生产出的芯片中,能正常工作的比例,即合格
    的头像 发表于 12-30 10:42 6054次阅读
    <b class='flag-5'>芯片</b><b class='flag-5'>良</b><b class='flag-5'>率</b>相关知识点详解

    台积电2nm芯片试产达60%以上,有望明年量产

    了业界的普遍预期。 据悉,台积电一直致力于在半导体制造技术的前沿进行探索和创新,此次2nm芯片的成功试产,再次证明了其在该领域的领先地位。台积电表示,这一成果得益于其先进的制程技术和卓越的生产管理能力。 随着
    的头像 发表于 12-09 14:54 1492次阅读