0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

“纳米岛”型催化剂突破传统催化剂活性和稳定性的矛盾

新材料在线 来源:新材料在线 作者:新材料在线 2022-11-18 09:54 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

10月26日,中国科学技术大学曾杰课题组、美国华盛顿州立大学 Yong Wang 课题组、美国加利福尼亚大学戴维斯分校 Bruce C. Gates 课题组和美国亚利桑那州立大学刘景月课题组合作,在《自然》(Nature)上,发表了题为“Functional CeOxnanoglues for robust atomically dispersed catalysts”的研究论文。该研究报道了一种“纳米岛”限域的原子级分散催化剂,突破了传统催化剂活性和稳定性的矛盾。

在多相催化中,原子级分散的金属催化剂具有独特的几何和电子特性、最高的原子利用效率和均匀的活性位点而备受关注。然而,高度分散的金属原子或因高表面能而移动团聚,致使稳定性差;或与载体作用过强而固定不动,导致活性位点钝化。因此,如何获取“动而不聚”的金属活性位点,从而打破催化剂活性和稳定性的对立矛盾,是催化领域悬而未解的难题之一。

鉴于此,科研人员设计出一种“纳米岛”型催化剂,即活性金属原子被隔离在“岛”上,可在各自的“岛”内移动但跨“岛”迁移受阻,进而实现原子的动态限域稳定。为了实现这一目标,研究需要选取恰当的材料分别用作“纳米岛”和载体。金属原子与“纳米岛”的作用力需远强于它与载体的作用力,否则易离开各自的“纳米岛”。研究人员在设计的模型催化剂中选取和金属作用强的氧化物作为“岛”(如氧化铈),作用弱的氧化物作为支撑“岛”的载体(如氧化硅)。为了高效地分隔金属原子,“岛”需要有足够高的密度和足够小的尺寸。传统的制备方法(如固液混合浸渍法等)易造成“岛”的尺寸过大且不均匀。研究人员开发出一种液相静电吸附的合成方法(图1),即将高密度的铈原子附着在氧化硅表面,使其自下而上受控团聚为仅2纳米的孤立“岛”(图2)。

进一步,难点在于将金属原子准确地放置在“纳米岛”上。研究人员再次借助液相静电吸附法,并巧妙地利用零电点原理,使氧化铈岛和氧化硅载体表面分别带上相反电荷。由于异性电荷相互吸引的作用,负电性的铂前驱体只会被选择性地吸附在带正电的氧化铈“纳米岛”上,而不会在带负电的氧化硅载体上,从而实现了铂原子的择位生长。由于小尺寸“纳米岛”的吸附面积有限,通过控制铂前驱体浓度,便可实现平均每个“岛”上不超过一个铂原子的目标(图3)。稳定性研究表明,氧化铈“纳米岛”上的铂原子可以抵抗高达600摄氏度的空气煅烧。特别地,铂原子在高温下的氢气氛围中只会限定在“岛”内移动,不会跨“岛”团聚,实现了活性位点的“动而不聚”。经此活化后的催化剂,在催化一氧化碳氧化反应的活性提升两个数量级并兼具高稳定性(图4)。

这一工作为突破催化剂活性和稳定性的矛盾提供了新的解决思路。未来,通过选择特定材料的载体、“纳米岛”和活性金属原子,有望将该“纳米岛”类型催化剂应用于不同的催化反应。研究工作得到国家重点研发计划、国家自然科学基金等的支持。

8e36bb02-66c8-11ed-8abf-dac502259ad0.jpg

图1.氧化铈“纳米岛”稳定铂原子催化剂的合成过程示意图

8e4785a4-66c8-11ed-8abf-dac502259ad0.jpg

图2.负载在氧化硅上的氧化铈“纳米岛”的结构表征

8e668076-66c8-11ed-8abf-dac502259ad0.jpg

图3.负载铂原子的“纳米岛”催化剂的结构表征

8e774122-66c8-11ed-8abf-dac502259ad0.jpg

图4.负载铂原子的“纳米岛”催化剂的催化性能测试

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米
    +关注

    关注

    2

    文章

    723

    浏览量

    41507

原文标题:中国科大《Nature》:突破传统催化剂活性和稳定性的矛盾

文章出处:【微信号:xincailiaozaixian,微信公众号:新材料在线】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    3552次循环突破!新型复合催化剂解锁锌电储能新纪元

    电子发烧友网综合报道 澳大利亚莫纳什大学材料与能源科学团队近期在锌空气电池领域取得突破性进展,其研发的复合催化剂成功将可充电锌空气电池的循环寿命推升至全新高度。   这项发表于《化学工程杂志
    的头像 发表于 11-16 00:38 6030次阅读

    LED 太阳光模拟器:光谱匹配AM1.5G 保障光催化活性测试的准确性

    催化技术在制氢、CO₂还原、污染物降解等领域展现巨大产业化潜力,其技术突破的关键是光催化材料活性测试的准确性与可重复性。光催化反应依赖光子
    的头像 发表于 08-25 18:02 712次阅读
    LED 太阳光模拟器:光谱匹配AM1.5G 保障光<b class='flag-5'>催化活性</b>测试的准确性

    瞬态吸收光谱技术揭示光催化过程关键机理,进而为g-CN基光催化材料的性能提升提供了新的策略

    半导体催化剂中,长寿命的激发态能够有效提升光生载流子的利用效率,从而增强光催化性能。在此研究中,我们通过超分子工程合成了一种具有氮空位和明显n-π*跃迁的中空管状
    的头像 发表于 07-17 09:33 747次阅读
    瞬态吸收光谱技术揭示光<b class='flag-5'>催化</b>过程关键机理,进而为g-CN基光<b class='flag-5'>催化</b>材料的性能提升提供了新的策略

    基于碳纳米材料的TPU导电长丝制备与性能研究

    HS-TGA-103热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料
    的头像 发表于 07-11 10:21 334次阅读
    基于碳<b class='flag-5'>纳米</b>材料的TPU导电长丝制备与性能研究

    连续焦耳加热赋能三元协同催化剂,高效水处理方案来袭

    在环境工程领域,工业废水中有机污染物的高效降解一直是科研人员攻坚的重点难题。过渡金属氧化物催化剂凭借其可调控的活性位点结构,在高级氧化技术中展现出独特优势,能够活化过硫酸盐产生活性氧。特别是具有
    的头像 发表于 06-18 15:10 831次阅读
    连续焦耳加热赋能三元协同<b class='flag-5'>催化剂</b>,高效水处理方案来袭

    霍尼韦尔将收购庄信万丰的催化剂技术业务 拓展先进催化剂和工艺技术产品组合

    霍尼韦尔(纳斯达克代码:HON)宣布已同意以 18 亿英镑(约24.2亿美元)的全现金方式收购庄信万丰(Johnson Matthey)旗下催化剂技术业务。此次交易估值约为 2025 年息税折旧摊销
    的头像 发表于 06-07 15:43 646次阅读

    干簧继电器:芯片测试仪的“性能催化剂

    新的接口电路板即可。这些接口电路板直接为新芯片配置,连接新芯片与现有的测试机,从而实现对新芯片的测试。这种替代方案不仅节省了成本,还提高了测试的灵活性和效率。 干簧继电器的关键作用在接口电路板中,干簧
    发表于 04-07 16:40

    程斯-催化剂磨损指数测定仪-英文视频.

    仪器仪表测定仪
    csizhineng
    发布于 :2025年03月03日 16:48:42

    晶硅切割液润湿用哪种类型?

    切割精度,甚至损坏切割设备。 稳定性 :在切割工艺的温度变化范围内,以及切割液的酸碱性条件下,都能保持稳定性能,持续发挥作用。
    发表于 02-07 10:06

    赛锐特-催化剂磨耗测试仪-视频解说

    测试仪
    sinceritysmart
    发布于 :2025年01月09日 09:03:48

    程斯-催化剂磨损指数测定仪-AI解说视频

    测定仪
    jf_62302303
    发布于 :2025年01月08日 13:19:59

    程斯-催化剂磨损指数测定仪-解说视频

    测定仪
    jf_62302303
    发布于 :2025年01月08日 13:18:37

    理涛-催化剂磨损指数测定仪-解说视频

    测定仪
    上海理涛自动化科技有限公司
    发布于 :2025年01月08日 09:28:34

    燃料电池的主要材料 燃料电池的效率和性能

    燃料电池的主要材料 1. 催化剂 燃料电池的核心部件之一是催化剂,它加速了燃料和氧化之间的化学反应。常用的催化剂包括铂(Pt)、钯(Pd)和它们的合金或氧化物。这些材料具有高
    的头像 发表于 12-11 09:14 3204次阅读