0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

半导体制造新器件设计支持新逻辑概念

芯片半导体 来源:芯片半导体 作者:芯片半导体 2022-08-03 15:43 次阅读

将二维材料集成到传统的半导体制造工艺中可能是芯片行业历史上更激进的变化之一。

尽管在半导体制造中引入任何新材料都会带来痛苦和这么,但过渡到金属二硫属化物 (TMD:transition metal dichalcogenides) 支持各种新的器件概念,包括BEOL晶体管和单晶体管逻辑门。新的背栅(back-gate )和分栅(split-gate)晶体管已经显示出二维设计的前景。

一段时间以来,人们已经了解了诸如 MoS 2和 WS 2等 TMD 对晶体管沟道的优势。随着器件的缩小,沟道厚度也需要缩小,以最大限度地减少短沟道效应。然而,在硅中,非常薄的层会受到载流子迁移率降低的影响。陷阱( traps )和其他界面缺陷(interface defects)的影响压倒了体积特性。

相比之下,二维材料没有平面外悬挂键(out-of-plane dangling bonds,),从而减少或消除了界面效应。虽然业界一致认为 3nm 是硅沟道的实际厚度限制,但 MoS 2单层的厚度小于 1nm。

直到最近,接触电阻还是采用 TMD 的最大障碍。然而,在过去一年左右的时间里,锑和铋等半金属已成为潜在的解决方案。半金属往往不会在半导体带隙中产生电子态,因为它们本身没有带隙,并且它们在费米能级处具有低态密度。

尽管如此,将 TMD 与现有的半导体制造基础设施集成仍然具有挑战性。所涉及的许多材料——钼、硫、锑和铋等——对行业来说都是新的,可能对现有工艺有害。

制造 TMD 单层

最好的 TMD 单层是通过从块状材料上剥离或在蓝宝石上进行分子束外延制造的,这两种方法都需要随后转移到传统晶圆上。虽然它是一种对制造更友好的工艺,但金属有机化学气相沉积需要非常高的沉积温度,并且可以将碳副产物掺入沉积膜中。

在最近的 VLSI 技术研讨会上,英特尔的组件研究工程师 Kirby Maxey 和他的同事指出,实际上 TMD 晶体管有两种不同的用例。一种是在生产线前端( front-end-of-line),它使用 TMD 代替高性能 finFET 或硅纳米片晶体管。这种应用依赖于高质量的单晶层,此时需要在 1,000°C 附近的沉积温度。英特尔小组表明,金属有机前体物质的热解会导致碳沉积以及 TMD,但替代前体和优化的工艺条件可以提高薄膜质量。

第二个潜在用例将 TMD 放置在第二(或第三)有源层中,与中间金属和接触层垂直堆叠。一旦金属层在晶圆上,沉积温度就会受到更多限制。但是这些后端产线(back-end-of-line)晶体管可能更大,并且能够使用更厚的多晶通道。成功的沉积工艺需要与沉积发生时晶圆上的任何材料兼容。

高度缩放的 FEOL 设备寻求最小化沟道厚度,仅使用单层 TMD 材料。在第二层开始生长之前,第一个成核位点应该合并成一个连续的薄膜。在今年的材料研究学会春季会议上发表的工作中,亚琛工业大学的研究员 Songyao Tang 及其同事分析了 WS 2单分子层的生长和聚结。随着initial nucleation islands变大,他们发现中心到边缘的距离超过了吸附原子的迁移距离。当吸附原子无法到达微晶的边缘时,就会形成双层。通常,过早的双层可以覆盖薄膜总表面积的 30%。

亚琛工业大学小组确定了几种减少双层形成的方法。如果每个单独的微晶都更小,那么吸附原子就不需要走那么远就能到达边缘。因此,一种可能的解决方案是减小 grain size,同时增加nucleation位置的数量。英特尔小组将这一想法更进一步,使用过渡金属氧化物模式作为与硫属元素前体反应的模板。使用模板,工艺工程师可以控制 TMD 晶粒相对于预期电路图案的位置和方向。

较高的沉积温度通过增加吸附原子在结合到生长膜中之前可以迁移的距离来减少双层形成。不过,TMD 沉积温度已经相当高,制造商希望降低它们。最后,降低生长速率使每个吸附原子有更多时间在被随后的生长掩埋之前找到一个能量有利的位置。

新器件设计支持新逻辑概念

随着提议的器件设计走向制造,工艺工程师必须确定是否存在合理的集成方案。例如,许多提议的设计依赖于背栅,要么应用一般的反向偏置,要么形成单独控制的局部栅极。虽然这样的设计相对容易通过层转移技术制造,但直接在预先存在的栅极电介质上生长高质量的 TMD 材料并不那么简单。

803410d6-0e8a-11ed-ba43-dac502259ad0.png

图 1:具有可以强烈累积的厚而均匀的 EOT,全背栅配置产生最高的离子 (a);顶栅+FBG有不同的EOT,单独扫过;本地背栅 (c) 和连接的双栅 (d) 提供了 EOT 扩展的好处。资料来源:IMEC

在 12 月的 IEEE 电子器件会议上展示的工作中,Imec 的研究员 Quentin Smets 及其同事提出了四种不同的设计——仅全背栅、顶栅加全背栅设计、仅局部背栅和顶栅加局部背栅设计门“连接双门”设计。其中,连接的双门设计提供了最好的沟道控制,但结果不太一致。局部背栅处理导致通道中的形貌。在最短的栅极长度处,顶部栅极电极和电介质之间存在间隙,这可能是由于蚀刻不完全。这些不太理想的结果增加了可变性并为工艺改进提供了机会,但 CDG 设计仍然提供始终如一的更好性能。

在硅GAA设计中,整个门在电气上是一个单一的单元。只有一个偏置旋钮。使用双独立门,有两个。具有两个输入信号和一个输出信号的器件可能定义一个单晶体管逻辑门。传统的门需要至少两个晶体管。相比之下,单晶体管门在更小的电路占位面积内提供相同的功能。台积电的 Yun-Yan Chung 及其同事于 2020 年首次提出了基于独立控制的顶栅和底栅的单晶体管栅极。最近,韩国仁荷大学的 Minjong Lee 及其同事展示了带有分离顶栅的设备。在他们的 AND-FET 晶体管/栅极中,栅极的两半垂直于沟道。仅当栅极的两半都“开启”时,晶体管才“开启”。或者,在 OR-FET 晶体管/栅极中,栅极的一半与通道平行。如果栅极的任何一半“开启”,则晶体管“开启”。

纵向和横向Split-Gate模型

8045a7a6-0e8a-11ed-ba43-dac502259ad0.png

图 2:AND-FET(a、b、c)和 OR-FET(d、e、f)的图像、电路图和 3D 示意俯视图。资料来源:知识共享

结论

现在说基于过渡金属二硫化物通道的单晶体管门是否是数字逻辑的未来,或者晶体管最终是否会进入 BEOL 堆栈还为时过早。但随着硅的终结——这一次可能是真的——这些材料提供了一种对后硅未来的看法。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    328

    文章

    24506

    浏览量

    202092
  • 晶体管
    +关注

    关注

    76

    文章

    9054

    浏览量

    135186
  • 半导体制造
    +关注

    关注

    8

    文章

    364

    浏览量

    23775

原文标题:2D材料,半导体行业最激进的变化!

文章出处:【微信号:TenOne_TSMC,微信公众号:芯片半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    FPGA零基础学习系列精选:半导体存储器和可编程逻辑器件简介

    。 集成电路是20世纪50年代后期一60年代发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元
    发表于 03-28 17:41

    半导体制造技术节点:电子科技飞速发展的幕后英雄

    半导体制造技术是现代电子科技领域中的一项核心技术,对于计算机、通信、消费电子等众多产业的发展具有至关重要的影响。随着科技的不断进步,半导体制造技术也在不断发展,不断突破着制造的极限。其中,半导
    的头像 发表于 03-26 10:26 310次阅读
    <b class='flag-5'>半导体制造</b>技术节点:电子科技飞速发展的幕后英雄

    半导体制造中混合气体需精确控制

    半导体制造中,进行气体定量混合配气使用是一个关键的步骤,将不同气体按一定的比例混合到一起,配出不同浓度、多种组分的工艺气体后才能更好的满足工艺性能的要求,以确保半导体器件制造过程得
    的头像 发表于 03-05 14:23 140次阅读
    <b class='flag-5'>半导体制造</b>中混合气体需精确控制

    台积电成全球最大半导体制造

    近日,金融分析师奈斯泰德(Dan Nystedt)公布了2023年全球半导体制造商的营收数据,其中台积电以693亿美元的业绩首次超越英特尔和三星电子,登顶全球最大半导体制造商的位置。这一成就标志着台积电经过36年的努力,终于在全球半导体
    的头像 发表于 02-23 17:34 635次阅读

    使用压力传感器优化半导体制造工艺

    如今,半导体制造工艺快速发展,每一代新技术都在减小集成电路(IC)上各层特征的间距和尺寸。晶圆上高密度的电路需要更高的精度以及高度脆弱的先进制造工艺。
    的头像 发表于 12-25 14:50 212次阅读

    领先的功率半导体制造

    随着科技的飞速发展,功率半导体已经深入到我们生活的各个领域。从我们日常使用的家电,到环保出行的电动汽车,再到航空航天领域的飞机和宇宙飞船,都离不开功率半导体。下面介绍的就是市场上功率半导体制造商中的领导者。
    的头像 发表于 11-27 14:53 264次阅读
    领先的功率<b class='flag-5'>半导体制造</b>商

    半导体制造背后的艺术:从硅块到芯片的旅程

    半导体制造是现代微电子技术的核心,涉及一系列精细、复杂的工艺步骤。下面我们将详细解析半导体制造的八大关键步骤:
    的头像 发表于 09-22 09:05 1859次阅读
    <b class='flag-5'>半导体制造</b>背后的艺术:从硅块到芯片的旅程

    华为公开“晶圆处理设备和半导体制造设备”专利

     根据专利摘要,该公开是关于晶圆处理设备和半导体制造设备的。晶圆处理设备由:由支持晶圆构成的晶圆支持部件,光源排列位于晶圆的支持方向,适合对晶圆进行光辐射加热。光源阵列至少使晶圆半径方
    的头像 发表于 09-08 09:58 585次阅读
    华为公开“晶圆处理设备和<b class='flag-5'>半导体制造</b>设备”专利

    半导体封测设备有哪些 半导体制造流程详解

    半导体行业呈现垂直化分工格局,上游包括半导体材料、半导体制造设备等;中游为半导体生产,具体可划分为芯片设计、晶圆制造、封装测试;
    发表于 08-29 09:48 2145次阅读
    <b class='flag-5'>半导体</b>封测设备有哪些 <b class='flag-5'>半导体制造</b>流程详解

    半导体制冷器的五个系列及应用简介

    半导体制冷器也叫半导体制冷模组、半导体热电制冷模组、热电制冷模块,热电制冷器等。它是由半导体制冷片及其两侧添加传热结构组合而成的温控器件
    的头像 发表于 08-25 17:58 2162次阅读
    <b class='flag-5'>半导体制</b>冷器的五个系列及应用简介

    半导体制造工艺之光刻工艺详解

    半导体制造工艺之光刻工艺详解
    的头像 发表于 08-24 10:38 1300次阅读
    <b class='flag-5'>半导体制造</b>工艺之光刻工艺详解

    ALD是什么?半导体制造的基本流程

    半导体制造过程中,每个半导体元件的产品都需要经过数百道工序。这些工序包括前道工艺和后道工艺,前道工艺是整个制造过程中最为重要的部分,它关系到半导体芯片的基本结构和特性的形成,涉及晶圆
    发表于 07-11 11:25 3309次阅读
    ALD是什么?<b class='flag-5'>半导体制造</b>的基本流程

    如何使用半导体制造二极管?

     二极管是最简单的半导体器件,在本文中,我们将了解什么是半导体、掺杂的工作原理以及如何使用半导体制造二极管。但首先,让我们仔细看看硅。硅是一种非常常见的元素,是沙子和石英中的主要元素。
    的头像 发表于 07-06 11:13 1018次阅读
    如何使用<b class='flag-5'>半导体制造</b>二极管?

    半导体制冷器应用--半导体冷冻治疗仪

    半导体冷冻治疗仪利用半导体制冷组件产生的低温来治疗疾病,是近年来发展较快的物理治疗设备。它具有温控精确、功耗低、体积小等优点,在康复治疗领域有广阔的应用前景。半导体冷冻治疗仪包括治疗仪本体、
    的头像 发表于 06-12 09:29 766次阅读
    <b class='flag-5'>半导体制</b>冷器应用--<b class='flag-5'>半导体</b>冷冻治疗仪

    SiC赋能更为智能的半导体制造/工艺电源

    半导体器件制造流程包含数个截然不同的精密步骤。无论是前道工艺还是后道工艺,半导体制造设备的电源都非常重要。
    发表于 05-19 15:39 509次阅读
    SiC赋能更为智能的<b class='flag-5'>半导体制造</b>/工艺电源