0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GaN和SiC的技术挑战

gvxiaot 来源:gvxiaot 作者:gvxiaot 2022-07-27 15:52 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

每个世纪在人类努力的各个领域都有其重大发明。对于电力电子而言,21世纪正在加速发现宽带隙。在过去的二十年里,研究人员和大学已经对几种宽带隙材料进行了试验,这些材料显示出在射频、发光、传感器和功率半导体应用中替代现有硅材料技术的巨大潜力。新世纪之初,氮化镓 (GaN) 和碳化硅 (SiC) 已经足够成熟,并获得足够的牵引力,将其他潜在的替代品抛在身后,并得到全球工业制造商的充分关注。

最近,重点是调查与材料相关的缺陷;为新产品开发定制的设计、流程和测试基础设施;并建立一个可重现的无源(二极管)设备和几个有源设备。(MosFET、HEMT、MesFET、JFET 或 BJT)等器件开始进入演示板,并展示了宽带隙 (WBG) 材料带来的无可争辩的优势。关于功率半导体,这些包括工作温度范围的扩展、电流密度的增加以及高达十倍的开关损耗降低,从而允许在显着更高的频率下连续工作,从而减少系统重量和最终应用的尺寸。对于这两种材料,仍然存在一些独特的工程挑战:

GaN 非常适合中低功率应用,主要是消费类应用。它允许在有一个或多个电源开关的情况下实现高度的单片集成。与驱动电路共同封装,具有在最先进的 8–12 英寸混合信号晶圆制造厂制造的单片芯片上创建电源转换 IC 的潜力。镓被认为是一种稀有、无毒的金属,可能会在硅生产设施中作为无意的受体产生副作用,因此对于许多制造工艺步骤(如干法蚀刻、清洁或高温工艺)来说,镓是严格分离的,仍然是一项关键要求。

此外,GaN 是在 MO-CVD 外延工艺中沉积在晶格不匹配的载体(如 SiC)上或更大的晶圆直径上,通常甚至在硅上,这会引发薄膜应力和晶体缺陷,这主要导致器件不稳定,偶尔会导致灾难性故障.

GaN 功率器件通常是横向 HEMT 器件,它利用源极和漏极之间的固有二维电子气通道,由肖特基型金属门控。

另一方面,碳化硅由丰富的硅和石墨成分组成,它们共同构成了近 30% 的地壳。工业规模的单晶 SiC 锭的增长为 6 英寸提供了成熟且广泛可用的资源。最近,先行者开始评估 8 英寸晶圆,希望在未来五年内,SiC 制造将扩展到 8 英寸晶圆制造线。

SiC 肖特基二极管和 SiC MOSFET 的广泛市场采用提供了所需的缩放效应,以降低高质量衬底、SiC 外延和制造工艺的制造成本。通过视觉和/或电应力测试消除的晶体缺陷极大地影响了较大芯片尺寸的产量。此外,由于沟道迁移率低,还存在一些挑战,这使得 SiC FET 在 100-600 V 范围内无法与硅 FET 竞争。

市场领导者已经意识到垂直供应链对制造 GaN 和 SiC 产品的重要性。在单一屋檐下建立制造能力,包括晶体生长、晶圆和抛光、外延、器件制造和封装专业知识。它还包括优化的模块和封装,将快速瞬态和热能力或宽带隙 (WBG) 器件的限制考虑在内,从而实现低成本以及高良率和可靠性。

凭借广泛且具有竞争力的产品组合和全球供应链,新的重点正在转向产品定制,以实现改变游戏规则的应用程序。硅二极管、IGBT 和超结 MOSFET 替代品为 WBG 技术的市场做好了准备。为选择性拓扑定制电气性能以继续提高电源效率有很大的潜力;扩大行驶里程;减少重量、尺寸和组件数量;并在工业、汽车和消费领域实现新颖、突破性的终端应用。

实现快速设计周期的一个关键因素是准确的 spice 模型,其中包括热性能和校准的封装寄生参数。这适用于几乎所有流行的模拟器平台)以及快速采样支持、应用说明、定制的 SiC 和 GaN 驱动器 IC 以及全球支持基础设施。

未来十年将见证另一次历史性变革,基于 GaN 和 SiC 的功率半导体将推动电力电子封装集成和应用领域的激进发明。在这个过程中,硅器件将几乎从电源开关节点上消失。尽管如此,他们仍将继续在高度集成的电源 IC 和较低电压的体制中寻求庇护。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SiC
    SiC
    +关注

    关注

    32

    文章

    3502

    浏览量

    68070
  • 氮化镓
    +关注

    关注

    66

    文章

    1857

    浏览量

    119196
  • GaN
    GaN
    +关注

    关注

    21

    文章

    2326

    浏览量

    79209
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Si、SiCGaN,谁更适合上场?| GaN芯片PCB嵌埋封装技术解析

    以下完整内容发表在「SysPro电力电子技术」知识星球-《功率GaN芯片PCB嵌埋封装技术全维解析》三部曲系列-文字原创,素材来源:TMC现场记录、Horse、Hofer、Vitesco-本篇为节选
    的头像 发表于 08-07 06:53 1273次阅读
    Si、<b class='flag-5'>SiC</b>与<b class='flag-5'>GaN</b>,谁更适合上场?| <b class='flag-5'>GaN</b>芯片PCB嵌埋封装<b class='flag-5'>技术</b>解析

    深爱半导体 代理 SIC213XBER / SIC214XBER 高性能单相IPM模块

    SIC213XBER / SIC214XBER 全新高性能单相IPM模块系列!我们以全新ESOP-9封装与新一代技术,赋能客户在三大核心维度实现飞跃性提升:效率跃升、空间减负、成本优化与可靠性保障
    发表于 07-23 14:36

    什么是IGBT/SiC/GaN HEMT功率芯片/模块/模组?特性是什么?主要应用哪里?

    IGBT/SiC/GaN HEMT功率芯片/模块/模组 一、核心器件定义 ‌ IGBT(绝缘栅双极型晶体管) ‌ 电力电子领域核心开关器件,通过栅极电压控制导通状态: ‌ 结构特性 ‌:融合
    的头像 发表于 05-26 14:37 1890次阅读

    使用基于GaN的OBC应对电动汽车EMI传导发射挑战

    本期,为大家带来的是《使用基于 GaN 的 OBC 应对电动汽车 EMI 传导发射挑战》,将深入回顾 CISPR 32 对 OBC 的 EMI 要求,同时详细探讨可靠数据测量的最佳做法、GaN 对 EMI 频谱的影响,以及解决传
    的头像 发表于 05-24 15:46 4232次阅读
    使用基于<b class='flag-5'>GaN</b>的OBC应对电动汽车EMI传导发射<b class='flag-5'>挑战</b>

    交流充电桩负载能效提升技术

    0.5W以下。 交流充电桩的能效提升需融合材料科学、电力电子与信息技术,通过器件革新、拓扑优化、智能控制及系统集成实现全方位降耗。未来,随着SiC/GaN成本下降与能源互联网发展,充电桩将逐步从“能源消耗节点”转型为“智慧能源枢
    发表于 05-21 14:38

    GaNSiC功率器件深度解析

    本文针对当前及下一代电力电子领域中市售的碳化硅(SiC)与氮化镓(GaN)晶体管进行了全面综述与展望。首先讨论了GaNSiC器件的材料特性及结构差异。基于对市售
    的头像 发表于 05-15 15:28 1497次阅读
    <b class='flag-5'>GaN</b>与<b class='flag-5'>SiC</b>功率器件深度解析

    GaN、超级SI、SiC这三种MOS器件的用途区别

    如果想要说明白GaN、超级SI、SiC这三种MOS器件的用途区别,首先要做的是搞清楚这三种功率器件的特性,然后再根据材料特性分析具体应用。
    的头像 发表于 03-14 18:05 2176次阅读

    SiCGaN技术专利竞争:新兴电力电子领域的创新机遇

    在过去十年中,碳化硅(SiC)和氮化镓(GaN)技术的迅速崛起显著重塑了电力电子行业。这些宽禁带材料提供了诸多优势,如降低功率损耗、更高的开关速度以及能够在高温下工作,使其特别适用于电动汽车(EV
    的头像 发表于 03-07 11:10 875次阅读
    <b class='flag-5'>SiC</b>与<b class='flag-5'>GaN</b><b class='flag-5'>技术</b>专利竞争:新兴电力电子领域的创新机遇

    安森美SiC cascode JFET并联设计的挑战

    随着Al工作负载日趋复杂和高耗能,能提供高能效并能够处理高压的可靠SiCJFET将越来越重要。我们将详细介绍安森美(onsemi)SiC cascode JFET,内容包括Cascode(共源共栅)关键参数和并联振荡的分析,以及设计指南。本文将继续讲解并联的挑战
    的头像 发表于 02-28 15:50 1127次阅读
    安森美<b class='flag-5'>SiC</b> cascode JFET并联设计的<b class='flag-5'>挑战</b>

    香港科技大学陈敬课题组揭示GaNSiC材料的最新研究进展

    基于宽禁带半导体氮化镓,碳化硅的最新研究进展。研究成果覆盖功率器件技术和新型器件技术: 高速且具备优越开关速度控制能力的3D堆叠式GaN/SiC cascode 功率器件 多年来,商业
    的头像 发表于 02-19 11:23 1231次阅读
    香港科技大学陈敬课题组揭示<b class='flag-5'>GaN</b>与<b class='flag-5'>SiC</b>材料的最新研究进展

    GaN技术:颠覆传统硅基,引领科技新纪元

    在开关模式电源中使用 GaN 开关是一种相对较新的技术。这种技术有望提供更高效率、更高功率密度的电源。本文讨论了该技术的准备情况,提到了所面临的挑战
    的头像 发表于 02-11 13:44 1019次阅读
    <b class='flag-5'>GaN</b><b class='flag-5'>技术</b>:颠覆传统硅基,引领科技新纪元

    电动汽车的SiC演变和GaN革命

    电子发烧友网站提供《电动汽车的SiC演变和GaN革命.pdf》资料免费下载
    发表于 01-24 14:03 3次下载
    电动汽车的<b class='flag-5'>SiC</b>演变和<b class='flag-5'>GaN</b>革命

    为什么650V SiC碳化硅MOSFET全面取代超结MOSFET和高压GaN氮化镓器件?

    650V SiC碳化硅MOSFET全面取代超结MOSFET和高压GaN氮化镓器件
    的头像 发表于 01-23 16:27 1649次阅读
    为什么650V <b class='flag-5'>SiC</b>碳化硅MOSFET全面取代超结MOSFET和高压<b class='flag-5'>GaN</b>氮化镓器件?

    用于800V OBCM应用的基于GaNSiC的500kHz谐振双向DC/DC设计

    电子发烧友网站提供《用于800V OBCM应用的基于GaNSiC的500kHz谐振双向DC/DC设计.pdf》资料免费下载
    发表于 01-22 14:53 39次下载
    用于800V OBCM应用的基于<b class='flag-5'>GaN</b>和<b class='flag-5'>SiC</b>的500kHz谐振双向DC/DC设计

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN!

    BASiC基本半导体40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN! BASiC基本半导体40mR/650V SiC 碳化硅MOSFET
    发表于 01-22 10:43