0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种用于平面微流控芯片架构的先进电路概念

微流控 来源:微流控 作者:微流控 2022-07-22 09:12 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

尽管过去30年来芯片实验室(LoC)技术平台取得了长足进步,但仍缺乏标准化的微流控组件、真正的芯片自动化和流体电路先进功能的可扩展性。基于水凝胶的微流控芯片具有很高的扩展潜力,并可实现片上自动化,但其系统设计较为复杂。

据麦姆斯咨询报道,基于此,德累斯顿工业大学(Technische Universität Dresden)半导体与微系统研究所的研究人员提出了一种用于平面微流控芯片架构的先进电路概念,其集成了基于半导体的电阻晶体管逻辑电路(RTL),以及用于逻辑门操作的基于水凝胶的化学体积相变晶体管(CVPT)。该电路概念(CVPT-RTL)设计稳健且简单,适用于芯片实验室技术的常用材料和制造技术,从而解决了目前芯片实验室面临的三个主要挑战:污染问题、保持共源共栅级联的信号一致性、化学信号逆变。相关研究成果以“Logic Circuits Based on Chemical Volume Phase Transition Transistors for Planar Microfluidics and Lab-on-a-Chip Automation”为题发表于Advanced Materials Technologies期刊。

平面化学体积相变晶体管

类似于双极晶体管,CVPT是一个三端控制阀(图1)。这三个端子分别称为基极(B)、发射极(E)和集电极(C)。当作为控制信号的化学浓度低于阈值浓度时(图1a:100wt% H2O,蓝色染色-低信号),球形活性聚N-异丙基丙烯酰胺(pNIPAAm)凝胶完全溶胀并阻塞集电极通道,从而充当关闭阀门,而基极-发射极电流不受阻塞。将控制信号切换到高于阈值的浓度(图1b:20wt%异丙醇(IPA),红色染色-高信号),则导致水凝胶元件收缩,使晶体管进入增强状态,从而充当开放阀门。

d4d7b028-095a-11ed-ba43-dac502259ad0.jpg

图1 CVPT的特征行为

CVPT-RTL逆变器

如何利用CVPT来进行化学流体信号的逆变,是平面微流控逻辑电路中遇到的主要挑战之一。如图2a-b所示,CVPT(RCVPT)、电阻器(R1、R2、R3)和无源曲流混合器(Rmix)并排固定在PDMS微流控芯片的玻璃基片上。各种组件模块分别通过相同长度或电阻的管道相互连接。图2c中的相应电路模型展示了CVPT在流体电路中的作用。其中,RCVPT代表集电极-发射极结处的流阻,由pNIPAAm凝胶的溶胀状态决定。基极-发射极通道的输入信号(X)可以根据需要使用压力源和连接到阀门的多个储液器进行实验设置。

d4e7da52-095a-11ed-ba43-dac502259ad0.jpg

图2 CVPT-RTL逆变器组件

图2d中的简图展示了CVPT-RTL逆变器的开关行为。IPA在基极的浓度输入以每10分钟一次的频率逐渐增加。一旦IPA浓度超过10wt% IPA达到CVPT,通道电阻RCVPT就会因凝胶的体积收缩而显著降低,从而导致集电极处的流量上升(红色曲线)。同时,输出端的流量因恒定高信号的流量缺失而减少(蓝色曲线)。紧接着,下一个操作信息(浓度)由Y输出端传递,该输出来自恒定供应信号通道。因此,控制集电极和输出流量对于共源共栅级联门的信号传输至关重要。通过始终为来自恒定供应通道的输出信号提供清晰的化学信号和信息,解决了系统中的污染问题和保持信号一致性问题。

而化学信号的逆变通过电路设计来解决。这个设想的最大缺点可能是系统中恒定信号供应的高消耗。因此,可以选择低成本流体用于恒定供应。如有必要,可以通过与数字电路类似的恒定电源输入处的流量的时间协调切换间隔(时钟信号)来抵消这一缺点。图2d中所展示的CVPT的响应时间约为4分钟。水凝胶的反应时间由其体积和协同扩散系数决定。信号(化学流体刺激)对水凝胶表面的强度和可用性对于响应时间也会产生重要影响。因此,当基本信号仅接触一侧的水凝胶致动器时,CVPT的响应时间将延长。

CVPT-RTL与非门

通过将图2c中逆变器的输入X替换为图3中的两个输入通道A和B,并在其后增加一个混合结构,可以在与CVPT-RTL逆变器相同的概念基础上执行逻辑NAND操作。A和B可以是低或高信号,两个输入信号汇流(1:1)并传输到CVPT基极。当A和B的输入信号都为低信号(<10wt% IPA),pNIPAAm凝胶就会膨胀,并且输出端会出现逻辑高信号(1)(图3a-b)。只有当两个输入信号都为高信号(>10wt% IPA)时,pNIPAAm凝胶才会收缩并打开集电极通道以在输出端产生从高(1)到低(0)的开关(图3c)。

d4f46e48-095a-11ed-ba43-dac502259ad0.jpg

图3 基于CVPT-RTL的NAND门和相关真值表的电路模型

CVPT-RTL共源共栅级联

将额外的CVPT(TCVPT,2)集电极通道连接到图4a中原本的CVPT(TCVPT,1)的发射极通道构成类似于电路中晶体管排列的CVPT-RTL共源共栅级联。当实施微流控电路时,CVPT-RTL共源共栅级联在NAND操作的信号处理方面也显示出显著的性能提升。添加第二个晶体管的主要优点是来自TCVPT,1的发射极信号将通过TCVPT,2的集电极,同时因层流条件的存在,信号不会混合。当信号为低时,TCVPT,2中的水凝胶因为被来自基极和集电极的两个低信号流包围,而很容易膨胀。因此,TCVPT,2中的水凝胶将首先膨胀,这导致流向废液池(例如R3+RCVPT,1+RCVPT,2)的总集电极管线中的阻力增加,从而降低了TCVPT,1上的压力,并且通过两步切换程序降低了水凝胶上的压力并缩短了总反应时间。

d5063146-095a-11ed-ba43-dac502259ad0.jpg

图4 a)CVPT-RTL共源共栅级联用于与非门的自稳定性能;b)共源共栅级联与非门的可靠性(24小时)测试。

微流控转换器模型

为了更好地理解微流控电路,例如转换器电路,研究人员利用计算机模型来模拟微流控网络中各个组件的行为,并选择了网络与信号流描述相结合作为模拟策略,开发了如图5所示的微流控转换器模型。

d511b5c0-095a-11ed-ba43-dac502259ad0.jpg

图5 基于三个与非门的转换器电路的微流控网络模型

而后,研究人员将模拟结果与实验数据进行比较。如图6所示,可以观察到每个与非门的逻辑行为。如果储液罐溶液是水,则所有“Y”输出都为高电平,从而导致“1 1 1”信号。如果储层溶液含有10wt% IPA,则检测到“1 1 0”输出,在15wt%时则输出“1 0 0”,在20wt%时输出结果为“0 0 0”。因此,该转换器功能既可以通过真实的实验实现,也可以通过仿真正确执行,实验数据与模型数据具有良好的一致性。

d527615e-095a-11ed-ba43-dac502259ad0.jpg

图6 实测与网络模型的比较

综上所述,研究人员将数字RTL电路集成到微流控化学体积相变晶体管(CVPT)器件,并结合了流体电路即共源共栅级联概念,实现了非和与非等逻辑运算,并解决了如污染问题、保持共源共栅级联性的信号一致性和化学信号逆变等主要挑战。流体电路概念不仅限于该研究中所示的CVPT设计,而且基本上适用于大多数微流控开关元件。未来的一个研究重点将是实现生物真实案例场景的概念应用,同时,根据相应的化学流体信号,发掘各种不同刺激敏感水凝胶的多功能性。

论文链接:

https://doi.org/10.1002/admt.202200185


审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电极
    +关注

    关注

    5

    文章

    881

    浏览量

    28295
  • 晶体管
    +关注

    关注

    78

    文章

    10277

    浏览量

    146363
  • 微流控
    +关注

    关注

    16

    文章

    588

    浏览量

    20545

原文标题:基于化学体积相变晶体管的逻辑电路,用于平面微流控自动化

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电压放大器驱动液滴芯片关键功能实现研究

    实验名称: 电压放大器在液滴芯片的功能研究中的应用 研究方向: 控生物芯片 测试目的:
    的头像 发表于 07-30 14:24 513次阅读
    电压放大器驱动液滴<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>关键功能实现研究

    玻璃芯片通常在哪些实验中用到

    中发挥重要作用。免疫荧光实验是一种利用荧光标记的抗体来检测特定抗原的技术,而玻璃的光学透明度使得它成为这种实验的理想选择。通过在玻璃芯片上进行免疫荧光染色,研究人员能够实时观察和
    的头像 发表于 07-03 16:38 431次阅读

    基于细胞控的阻抗测试解决方案

    基于细胞控的阻抗测试技术,作为一种新兴的技术,结合了芯片技术与电阻抗谱(EIS)技术,
    的头像 发表于 07-02 11:07 1054次阅读
    基于细胞<b class='flag-5'>微</b><b class='flag-5'>流</b>控的阻抗测试解决方案

    基于芯片的化学反应器性能优化方法

    了解什么是芯片以及其在化学反应器中的应用。芯片
    的头像 发表于 06-17 16:24 459次阅读

    芯片的封合工艺有哪些

    原理及操作流程:以PDMS基片芯片为例,先制备带有通道的PDMS基片,将其与盖片对准贴合,然后把对准贴合的二者置于160 - 200℃温度下保温
    的头像 发表于 06-13 16:42 601次阅读

    泰克设备在控技术研究中的应用

    控(Microfluidics)是一种使用微管道(尺寸为数十到数百微米)处理或操控微小流体(体积为纳升到阿升)的系统所涉及的科学和技术。 它是门涉及化学、流体物理、微电子、新材料
    的头像 发表于 05-22 16:26 824次阅读
    泰克设备在<b class='flag-5'>微</b><b class='flag-5'>流</b>控技术研究中的应用

    飞秒激光技术在芯片中的应用

    和传统芯片不同,芯片更像是个微米尺度的“生化反应平台”。详细来说,
    的头像 发表于 04-22 14:50 1090次阅读
    飞秒激光技术在<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>中的应用

    一种分段气隙的CLLC变换器平面变压器设计

    气隙设计的优点。 目录1 概述2 一种分段气隙的CLLC平面变压器设计3 实验验证4 参考文献 1 概述学者们从LLC拓扑原理、新型器件、改进拓扑、先进调制方法、谐振参数优化方法、磁性器件设计方法
    发表于 03-27 13:57

    纸基芯片的加工方法和优势

    纸基芯片的加工方法主要包括激光切割、压印技术、喷墨打印技术、层压技术和表面改性技术等。以下是这些加工方法的具体介绍: 激光切割 激光切割是一种利用激光束对材料进行切削的加工方法。
    的头像 发表于 02-26 15:15 819次阅读

    芯片在细胞培养检测中的应用

    的进步,目前,基于细胞、组织培养的芯片系统已应用到高通量筛选、药物开发及毒性测试等领域,未来还可将其应用到再生医学等相关技术中. 水凝胶是一种三维亲水性网络状聚合物,因其具有高含
    的头像 发表于 02-06 16:07 813次阅读

    Aigtek高电压放大器控细胞筛选测试

    控技术是一种在微小尺度上操控流体的高科技技术,具有极高的应用价值。其中,控细胞筛选作为一种
    的头像 发表于 01-20 16:33 687次阅读
    Aigtek高电压放大器<b class='flag-5'>微</b><b class='flag-5'>流</b>控细胞筛选测试

    请问ADS5474是一种什么架构

    请问ADS5474是一种什么架构
    发表于 01-02 07:27

    芯片键合技术

    芯片键合技术的重要性 芯片的键合技术是实现其功能的关键步骤之
    的头像 发表于 12-30 13:56 1139次阅读

    芯片中的CNC加工技术

    芯片的概述 芯片一种集成了微管道网络的
    的头像 发表于 12-27 14:41 1001次阅读

    玻璃芯片的特点

    玻璃芯片作为一种重要的控器件,具有许多独特的特点,使其在各种
    的头像 发表于 12-13 15:26 870次阅读