0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

VCSEL的基本结构 VCSEL技术的优势

要长高 来源:TechSugar 作者:立厷 2022-06-09 15:30 次阅读

知名分析机构Yole Developpement前不久的《VCSEL——2021年技术和市场趋势》报告指出,在数据通信和移动应用推动下,全球VCSEL(垂直腔面发射激光器)市场将在2026年达到24亿美元,年复合增长率为13.6%;目前最大市场是手机消费电子,预计同期将达17亿美元,年复合增长率为16.4%。数据通信是VCSEL第二大市场,预计2021年将产生4.3亿美元的收入,2026年将达到5.66亿美元,年复合增长率为5.6%。

报告指出,多结技术代表VCSEL行业的下一个飞跃,将加速VCSEL在汽车领域的应用,激光雷达(LiDAR)将是典型的应用场景,加上5G网络增加了对高速光模块的需求,这些都为VCSEL带来了更多市场机遇,不过,有一些技术挑战仍需面对。

VCSEL从哪里来?

从VCSEL结构看,它和普通边发射激光器(EEL)的最大区别在于,在腔体内其光场振荡是沿垂直方向,电流注入方向也是垂直的,所以电流注入和光场振荡方向平行,而边发射结构的振荡和电流是垂直的。

poYBAGKhoIKAWt_LAAGcp5A9YgE460.png

VCSEL的基本结构

感谢老鹰半导体首席科学家莫庆伟博士的报告提供了一张老照片,说明VCSEL诞生走到今天真的很不容易。1965年,美国林肯实验室的Ivars Melngailis最早提出了类似VCSEL的概念,是在普通边发射激光器上加了一个高反射电极,又做了隔断,所以强迫电流从右向左注入,同时强迫光场左右之间来回振荡,这就具有了现代VCSEL的基本形态。

poYBAGKhoI-AW1iRAAQxFsZ_VCA358.png

VCSEL的诞生

这样得到的激光器虽然样子还是边发射器,但光发出的方向实际上是从底部发出,本质上已经很接近现代VCSEL激光器的雏形了。当然,当时是基于锑化铟(InSb)材料体系,参数并不好,50ns脉冲,在10K超低温条件下电流阈值为20A(600A/mm2),但这已经很不容易了。

现代真正的VCSEL公认的发名者是东京技术大学的教授Kenichi lga。1977年,他在实验室笔记本上画出了VCSEL图形。后来他对VCSEL的发展做出了很多非常重要的贡献。

从发展历程看,最早的VCSEL始于1962年的红外波长半导体激光器;1964年出现了第一个接近VCSEL的纵向电流注入面发射激光器;1979年Kenichi lga在实验室实现了其1977年的概念;1984年实现了室温脉冲,越来越接近实用,之前是脉冲加低温。之后,贝尔实验室的很多人前赴后继,做DBR(分布布拉格反射)、离子注入等各种各样的VCSEL研究。1994年,在奥斯汀实现了湿法氧化技术,最后由霍尼韦尔把VCSEL带到了实用阶段,后来霍尼韦尔VCSEL业务被Finisar收购。

poYBAGKhoJyALCVhAAM3QIC4PjQ217.png

VCSEL发展历程

不同使用场景各取所需

除了数据通信,VCSEL的使用场景绝大多数和3D感测有关。3D感测的重要工作模式包括:被动双目、主动双目、结构光和飞行时间,基本上囊括了现在VCSEL的3D感测的应用场景。

被动双目是用两个摄像头模拟人的两个眼睛,从两个不同点看同一个物体,然后用大脑进行一些简单的几何运算,这是人类多年的进化获得的一个功能,现在是用VCSEL或计算机实现。

pYYBAGKhoKqAG1M6AAJwI6DkrYM874.png

3D感测的基本种类

主动双目也是两个摄像头,以投影仪主动投射光斑或光照,用两个摄像头接收这些光斑。

结构光保留了一个摄像头,另一个是投射光斑的投影仪,以摄像头接收这些光斑。这也是苹果Face ID的基本原理。

飞行时间有好几种,包括直接飞行时间(dToF)和间接飞行时间(iToF)。飞行时间本质上也是汽车激光雷达的基本用法。

poYBAGKhoMiADNK-AAQM4xmI0So104.png

iToF与dToF

在不同应用场景中,以上三种结构有不同的优势,比如结构光的深度信息精度与距离的平方成正比,在短距离时非常精确,超过一定距离(1米左右)精度就会下降,这也是苹果Face ID选择结构光的理由。因为结构光在1米以内、半米左右精度很高,距离再大,其精度就变得不如别的方案。

第二个方案是iToF,计算的是不同相位差,而dToF是计算飞出去打回来的时间。iToF主要是通过监测发射光和接收光之间的相位差,其精确度开始时不如结构光,超过1米后就比结构光好了。所以很多智能门禁或手机等距离远一点的应用经常采用。

dToF几乎对距离不太敏感,特别是长距离非常有优势,比如超过10米其精度很好,所以汽车激光雷达用dToF比较多,这也是后来苹果激光雷达扫描仪选中它构建外界3D VR环境的原因。

以上VCSEL采用的几个方案并不是相互竞争的,而会在不同场景下有不同的选择,VCSEL都会扮演很重要角色。

什么是多结结构?

前面提到,多结技术代表VCSEL行业的下一个飞跃,因为多结发射的性能会好很多,目前业界最高能做到七结。多结技术是垂直将几个PN结叠在一起,和普通多量子阱不一样,多量子阱是一个PN结,几个量子阱基本上平均分布。多结VCSEL的能带利用隧道结隧穿原理,将上一个PN结价带中的电子变成下一个PN结中的导带电子,这样周而复始,但不会永远下去,一般多到一定程度就会出现别的问题。

pYYBAGKhoNWAefQXAAL9tT7LzIs354.png

激光雷达用多结VCSEL技术

多结VCSEL的好处是可以得到更高的功率密度,这对激光雷达非常重要;同时也可以得到斜率效率,因为多个VCSEL只分享一个DBR,可以避免多次损耗。另外,对电源或驱动来说,在同样功率下,永远是高电压、低电流要比高电流、低电压更容易或更便宜。多结VCSEL通过电流不变,电压升高,对驱动和电源都是友好的变化,它是这两年VCSEL的重大突破,让其功率密度从几十瓦/平方毫米或几百瓦/平方毫米进入了几千瓦/平方毫米,从而变成了汽车雷达一个“光源选手”。

多结VCSEL的意义在于,假设把边发射激光器的几个量子阱叠起来,或把几个边发射激光器串联起来,如果把VCSEL做成多结,从光学角度看,是所谓的“没有变化”。如果把边发射激光器三个量子阱叠在一起,面积立体角乘积(Area Solid Angle)就变成了三倍;如果把3个器件串联起来也是三倍;而做成多结,面积立体角乘积没有变,只是光密度和远场变成了三倍。这样,多结在光学上可以获得很多好处,而且付出的代价相对较低。得到的好处远远多过付出的负面代价,这是做多结VCSEL背后非常重要的逻辑。

pYYBAGKhoQCAPiXiAASJB9F-Mn8644.png

多结VCSEL与多结EEL、多芯片EEL对比

VCSEL之光已照进现实

苹果手机和iPad采用VCSEL将VCSEL带到了一个新的高度,使3D感测应用出现了数量级的增长。iPad Pro基于dToF技术的VCSEL方案可以帮助用户构建3D虚拟场景,扫描周边环境,这是未来苹果虚拟现实生态的出发点。

前面说过,VCSEL是一种半导体器件,其激光垂直于顶面射出,与一般切开式独立芯片工艺,激光由边缘射出的边射型激光不同。它集合了红外边发射激光器的很多优点,采用更优质的激光源,既像红外LED非常适合大规模晶圆级生产,工艺和封装成本较低,又有边发射激光器非常好的光谱和较高的光密度特性;它还有温度漂移非常低的特征,从低温到高温每组VCSEL的典型漂移仅为0.07nm/K。这是其他光源很难做到的,这也是被苹果选中作为Face ID光源的重要原因。这是用于VCSEL的架构决定了它可以在许多光源的选择中胜出。

pYYBAGKhoQ6AAVG2AARQKyzwMxE179.png

VCSEL技术的优势

总之,VCSEL具有光电转换效率高、发散角小、光束质量好、波长稳定性好、可靠性高、阈值电流小、功耗低等优点,且易于与光纤耦合,易于单纵模发射和实现高调制频率,加上易于制备二维发光阵列,大批量生产成本可控,是3D成像、识别感测模组的关键器件,广泛应用于光通信和互连、数据采集和传输、消费电子3D成像、数据中心云计算物联网自动驾驶车辆、生物医学、工业等领域。

目前,基于VCSEL和SPAD(单光子阵列)的紧凑型全固态激光雷达已经量产。例如Ouster利用这种基于纯芯片的架构,不使用移动机械结构,推出了OS0、OS1、OS2三个系列9款激光雷达;最近又将数字激光雷达技术扩展至日韩两国工业和机器人垂直领域;并牵手英伟达加速部署自动驾驶汽车,基于NVIDIA DRIVE提供专用的NVIDIA DriveWorks插件,帮助客户将其数字激光雷达集成到自动驾驶车辆上。

另一家公司Ibeo也是采用基于VCSEL加SPAD阵列的方案实现二维扫描,其ibeoNEXT固态激光雷达方案体积非常小,已在长城摩卡SUV上车。

还有Valeo,2021年也推出了第二代SCALA和一款近场激光雷达,后者可以在车辆4个角代替现有毫米波雷达或超声波雷达,实现防撞避障、倒车等功能。这对VCSEL在汽车上的应用有重要意义,能够让使用场景变得更加丰富。这种VCSEL加SPAD的小体积方案可以将其集成在后视镜中,既美观又实用。

VCSEL想到哪里去?

pYYBAGKhoRuATDa3AAVawTPbwpU966.png

VCSEL应用趋势

从Yole对VCSEL历史到未来的展望可以看出,最初90年代实现工业化时主要用处是数据通信,如850nm高速激光器,后来在光学鼠标内也有应用;直到苹果推动第二次浪潮,令3D感测呈数量级增加。人们期待的下一波浪潮是汽车激光雷达,其数量未来也非常可观。激光雷达过后还有什么?IoT人工智能智能互联应用都会用到VCSEL。LED最早也是从手机背光开始,然后是电视背光,再到照明,汽车照明又是一个浪潮,现在Mini LED和Micro LED光电器件的市场规模和应用在一浪又一浪的批量应用中逐步放大。

Insight的市场分析表明,根据VCSEL技术的发展,功率越来越高,作用距离越来越远,使用场合也会逐步丰富。比如从最早的数据通信、移动传感器,到车辆监控或安防,或自动驾驶车辆。所以,其应用场景会随着VCSEL技术的发展或性能的提高越来越丰富,越来越广阔。

pYYBAGKhoSaAbUVXAAKt3MUls_A424.png

应用场景:功率与距离

挑战依然

从边射型激光器到现在的VCSEL走了很长一段路,苹果让VCSEL获得了行业的关注。不过,它所面对的挑战也是不一而足。

VIGO亚太区总经理廖明智博士指出,现在激光雷达还有很多技术路线之争,如905nm、1500nm和MEMS等,使用的半导体材料不同,性能方面各有利弊。

过去几年,VCSEL市场在进一步延伸和渗透,特别是车载应用也对VCSEL的性能、可靠性和成本提出了更多和更高要求。另外,还有几个重要参数需要考虑,包括视野、发射角度、探测范围和对象。相比消费类产品,激光雷达的发射范围有明显不同的要求,前者10米范围、小功率就能够满足需求,而VCSEL用于自动驾驶车辆其探测距离和功率都必须大幅提高,性能及可靠性的要求也要显著提升。

pYYBAGKhoTSAfsRHAALKEumKy9w925.png

车载应用要求更高

时下,之所以影响应用推广,还因为VCSEL和激光雷达缺乏相关标准,生产厂商要满足的条件非常多,只能根据客户要求进行定制,影响了产量和成本效益。因此,他希望能够通过与应用厂商和上下游生产厂商的更多合作,尽量形成共识,提升VCSEL的用量,实现应用的市场化和规模化。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • VCSEL
    +关注

    关注

    17

    文章

    231

    浏览量

    29703
  • 激光雷达
    +关注

    关注

    956

    文章

    3580

    浏览量

    186178
  • 半导体器件
    +关注

    关注

    12

    文章

    514

    浏览量

    31467
收藏 人收藏

    评论

    相关推荐

    采用ADS的CMOS VCSEL驱动器设计

    This Application Note presents VCSEL laser driver design using a .13um CMOS process with 8 copper metalization layers.
    发表于 06-14 15:01

    EVAL-ADN2530-ANZ,没有用于ADN2530差分VCSEL驱动器的VCSEL激光器光学评估板

    EVAL-ADN2530-ANZ,没有用于ADN2530差分VCSEL驱动器的VCSEL激光器的光学评估板。评估套件EVAL-ADN2530-ANZ具有相同的评估板,未连接TOSA
    发表于 09-02 08:21

    半导体VCSEL激光器结构解剖,芯片逆向解剖

    , 那肯定就跟材料学有关系, 而我们金鉴实验室是国家级公共技术服务平台,专注于半导体器件分析的的专业团队, 所以 VCSEL 激光器行业的朋友们有技术上的问题或者是材料表征试验需要做, 我们金鉴实验室均
    发表于 03-15 12:08

    快速理解3D传感的关键技术VCSEL

    因为苹果(Apple),许多的老技术开始找到自己的第二春,垂直共振腔面射型雷射(VCSEL)是最新的一个,由于苹果iPhone X的脸部辨识应用,让这项过去多使用在通讯领域的高阶技术有了新的市场
    发表于 11-27 05:38 2493次阅读

    垂直共振腔面射型laser(VCSEL技术详解

    VCSEL为垂直共振之半导体laser,自1980年代末被提出,1996年被商业化,Honeywell推出VCSEL传输模组,发光及检光的原材料以砷化镓 (GaAs)、砷化镓铟(InGaAs)为主,采有机金属气相沉积法( MOCVD )制成磊晶圆。
    的头像 发表于 11-28 10:23 1.3w次阅读

    TriLumina的技术基于其获得专利保护的倒装芯片背发射VCSEL

    VCSEL、LED、EEL光束对比对于VCSEL和LED之间的比较,Brian解释称VCSEL是一种激光器,相比LED它的光谱窄得多,发散度也小得多。虽然红外LED已成功应用于接近和深度
    的头像 发表于 05-07 11:45 7118次阅读

    VCSEL器件的理论分析及结构设计

    氧化限制层可以起到光电限制的作用,使VCSEL器件实现低阈值的单模激光输出。为提高VCSEL的边模抑制比,研究人员研究了氧化限制层对VCSEL激射性能的影响:Geib等以及Ku等对影响VCSE
    的头像 发表于 09-01 10:36 6969次阅读
    <b class='flag-5'>VCSEL</b>器件的理论分析及<b class='flag-5'>结构</b>设计

    vcsel芯片是什么?一文详解VCSEL芯片

    vcsel芯片是什么?VCSEL本质上是一种半导体激光器,激光器是用来发射激光的装置,而半导体激光器则是以半导体材料为工作物质发射激光的器件,根据激光芯片的结构,半导体激光器可分为边发射激光器(EEL)和垂直腔面发射激光器(
    的头像 发表于 10-13 09:56 8.3w次阅读
    <b class='flag-5'>vcsel</b>芯片是什么?一文详解<b class='flag-5'>VCSEL</b>芯片

    TriLumina先进的倒装芯片、背发射VCSEL技术

    传统VCSEL阵列都安装在基座上,并利用键合线进行电气连接。TriLumina的板载VCSEL器件结构紧凑,由单个VCSEL阵列芯片组成,可通过标准的表面贴装
    的头像 发表于 11-25 14:40 2949次阅读

    VCSEL激光器的优势有哪些

    VCSEL全称为垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser),是半导体激光器的一种,当前以砷化镓半导体为基础材料的VCSEL居多,发射波长主要
    发表于 09-27 11:23 3262次阅读

    什么是VCSELVCSEL结构与原理介绍

    和边发射激光器EEL,在精确度、小型化、低功耗、可靠性等角度全方面占优。 VCSEL结构与原理 VCSEL 器件有两种基本结构,一种是顶发射结构
    发表于 09-27 11:15 1.2w次阅读

    VCSEL老化测试方案

    Vcsel失效性分析和老化对比,VCSEL失效性分析测试方案
    发表于 12-03 17:38 2430次阅读
    <b class='flag-5'>VCSEL</b>老化测试方案

    可寻址VCSEL阵列的优点有哪些

    多节可寻址VCSEL(Addressable VCSEL)通过可控的多光束扫描技术,对外发射VCSEL激光器的点阵多光束光源;同时,探测器可以开启与发射相对应的区域,接收目标反射光;最
    的头像 发表于 05-17 17:43 4617次阅读

    RGB VCSEL光引擎有哪些应用

    基于多孔氮化镓(GaN)半导体材料的方法,研究人员已经开发出蓝光VCSEL。目前,ITRI和Ganvix正着眼于绿色波长和VCSEL阵列的量产。
    的头像 发表于 11-01 09:56 1298次阅读

    VCSEL激光器与EEL激光器的区别

    VCSEL激光器与EEL激光器的区别 VCSEL激光器与EEL激光器是两种不同的激光器技术,本文将详细介绍它们的区别。VCSEL激光器是垂直腔面发射激光器的缩写,而EEL激光器是边发射
    的头像 发表于 01-31 10:15 734次阅读