0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅和碳氮化硅薄膜的沉积方法

华林科纳半导体设备制造 来源:华林科纳半导体设备制造 作者:华林科纳半导体设 2022-02-15 11:11 次阅读

摘要

本文提供了在衬底表面上沉积碳化硅薄膜的方法。这些方法包括使用气相碳硅烷前体,并且可以釆用等离子体增强原子层沉积工艺。该方法可以在低于600“C的温度下进行,例如在大约23丁和 大约200V之间或者在大约100°CTo然后可以致密该碳化硅层以去除氢含量。此外,碳化硅层可以暴露于氮源以提供活性氮-氢基团,然后可以使用其它方法堡续沉积薄膜。等离子体处理条件可用于调节薄膜的碳、氢或氮含量。

技术领域

本文的第一方面通常涉及在衬底表面上沉积碳化硅层或薄膜的方法。在第一方面的特定实施例中,本文涉及利用有机硅烷前体化合物的原子层沉积工艺。本文的第二方面涉及用于等离子体增强原子层沉积的设备和方法。在第二方面的特定实施例中,该设备利用具有双通道的喷头或面板通过第一组通道输送远程产生的等离子体,并通过第二组通道输送前体和其 他气体。在第三方面,形成碳化硅层的方法可以在根据第二方面描述的设备中执行。

实验

一般来说,将含有Si、C、H的种子膜暴露于含N的等离子体中对生成膜是有效的。如果被处理的薄膜中含有很少的H,也可以在等离子体混合物中添加少量的氢,以促进产生更多的N-H键合。可以根据等离子体功率、暴露时间和温度对膜中硅与碳的比例进行调整。通过利用含有较高初始比值的前驱体,可以增加C与硅的比值。一般来说,在两个硅原子之间的桥接位置上含有碳的碳硅烷前体可以被溶剂化成碳化物型陶瓷,并有效地保留碳。另一方面,在前体不包含桥接碳原子的情况下,碳没有保留的程度。例如,基于甲基硅烷的前体发生碳损失。

设备和方法

本文的一方面涉及用于等离子体增强原子层沉积的设备和方法。在第二方面的特定实施例中,该设备利用具有双通道的喷头或面板通过第一组通道输送远程产生的等离子体,并通 过第二组通道输送前体和其他气体。所描述的设备和方法本发明的又一方面涉及一种工艺顺序,该工艺顺序包括在循环沉积或原子层沉积工艺期间在向衬底输送等离子体和向衬底表面输送前体之间交替进行。前驱脉冲和等离子体之间的切换使用快速切换过程来执行G在一个或多个实施例中,ALD工艺用于制造金属、金属氧化物、氮化物、碳化物、氟化物或其它层薄膜。在具体的实施例中,快速切换过程可用于在基质上形成碳化硅层,这可以通过从等离子体激活步骤开始,诱导提取氢以产生表面不饱和来完成。

总结

碳化硅和碳氮化硅薄膜的沉积方法

本文的一个实施例涉及在基底表面上形成碳化硅的方法,包括将具有反应性表面的基底暴露在汽相碳硅烷前体上以在基底表面上形成碳化硅层,其中所述碳硅烷前体包含至少一个桥接至少两个硅原子的碳原子。因此,本文的一个方面指向在衬底表面上形成层的方法,该方法包括提供衬底,将基底表面暴露于包含至少一个碳原子桥接至少两个硅原子的碳原子的碳硅烷前驱体,将汽相碳硅烷前驱体暴露于低功率能量源以在衬底表面提供碳硅烷、使碳硅烷通道密度化并将碳硅烷表面暴露于氮源。在这方面的一个实施例中,使碳硅烷致密包括将衬底表面暴露到包含一个或多个He、Ar和H2的等离子体上。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 面板
    +关注

    关注

    13

    文章

    1663

    浏览量

    53702
  • 设备
    +关注

    关注

    2

    文章

    4405

    浏览量

    70403
  • 碳化硅
    +关注

    关注

    25

    文章

    2647

    浏览量

    48643
  • 氮化硅
    +关注

    关注

    0

    文章

    70

    浏览量

    260
收藏 人收藏

    评论

    相关推荐

    碳化硅 (SiC) 与氮化镓 (GaN)应用 | 氮化硼高导热绝缘片

    SiC和GaN被称为“宽带隙半导体”(WBG)。由于使用的生产工艺,WBG设备显示出以下优点:1.宽带隙半导体氮化镓(GaN)和碳化硅(SiC)在带隙和击穿场方面相对相似。氮化镓的带隙为3.2eV
    的头像 发表于 09-16 08:02 208次阅读
    <b class='flag-5'>碳化硅</b> (SiC) 与<b class='flag-5'>氮化</b>镓 (GaN)应用  | <b class='flag-5'>氮化</b>硼高导热绝缘片

    碳化硅氮化镓哪种材料更好

    引言 碳化硅(SiC)和氮化镓(GaN)是两种具有重要应用前景的第三代半导体材料。它们具有高热导率、高电子迁移率、高击穿场强等优异的物理化学性质,被广泛应用于高温、高频、高功率等极端环境下的电子器件
    的头像 发表于 09-02 11:19 476次阅读

    碳化硅MOS在直流充电桩上的应用

    MOS碳化硅
    瑞森半导体
    发布于 :2024年04月19日 13:59:52

    碳化硅压敏电阻 - 氧化锌 MOV

    碳化硅圆盘压敏电阻 |碳化硅棒和管压敏电阻 | MOV / 氧化锌 (ZnO) 压敏电阻 |带引线的碳化硅压敏电阻 | 硅金属陶瓷复合电阻器 |ZnO 块压敏电阻 关于EAK碳化硅压敏
    发表于 03-08 08:37

    碳化硅产业链图谱

    碳化硅MOSFET等功率器件,应用于新能源汽车、光伏发电、轨道交通、智能电网、航空航天等领域;半绝缘型衬底可用于生长氮化镓外延片,制成耐高温、耐高频的HEMT 等微波射频器件,主要应用于5G 通讯、卫星、雷达等领域。 碳化硅
    的头像 发表于 01-17 17:55 509次阅读
    <b class='flag-5'>碳化硅</b>产业链图谱

    碳化硅特色工艺模块简介

    材料的生长和加工难度较大,其特色工艺模块的研究和应用成为了当前碳化硅产业发展的关键。 碳化硅特色工艺模块主要包括以下几个方面: 注入掺杂 在碳化硅中,硅键能较高,杂质原子难以在其中扩
    的头像 发表于 01-11 17:33 710次阅读
    <b class='flag-5'>碳化硅</b>特色工艺模块简介

    碳化硅功率器件简介、优势和应用

    碳化硅(SiC)是一种优良的宽禁带半导体材料,具有高击穿电场、高热导率、低介电常数等特点,因此在高温、高频、大功率应用领域具有显著优势。碳化硅功率器件是利用碳化硅材料制成的电力电子器件,主要包括
    的头像 发表于 01-09 09:26 2575次阅读

    氮化镓半导体和碳化硅半导体的区别

    氮化镓半导体和碳化硅半导体是两种主要的宽禁带半导体材料,在诸多方面都有明显的区别。本文将详尽、详实、细致地比较这两种材料的物理特性、制备方法、电学性能以及应用领域等方面的差异。 一、物理特性:
    的头像 发表于 12-27 14:54 1378次阅读

    三种碳化硅外延生长炉的差异

    碳化硅衬底有诸多缺陷无法直接加工,需要在其上经过外延工艺生长出特定单晶薄膜才能制作芯片晶圆,这层薄膜便是外延层。几乎所有的碳化硅器件均在外延材料上实现,高质量的
    的头像 发表于 12-15 09:45 2544次阅读
    三种<b class='flag-5'>碳化硅</b>外延生长炉的差异

    碳化硅的5大优势

    碳化硅(SiC),又名碳化硅,是一种硅和碳化合物。其材料特性使SiC器件具有高阻断电压能力和低比导通电阻。
    的头像 发表于 12-12 09:47 1572次阅读
    <b class='flag-5'>碳化硅</b>的5大优势

    碳化硅氮化镓哪个好

    、结构、制备方法、特性以及应用方面存在着一些差异。以下将详细介绍碳化硅氮化镓的区别。 1. 物理性质 碳化硅是由和硅元素组成的化合物,具
    的头像 发表于 12-08 11:28 1732次阅读

    碳化硅是如何制造的?碳化硅的优点和应用

    碳化硅,又称SiC,是一种由纯硅和纯组成的半导体基材。您可以将SiC与氮或磷掺杂以形成n型半导体,或将其与铍、硼、铝或镓掺杂以形成p型半导体。虽然碳化硅的品种和纯度很多,但半导体级质量的碳化
    的头像 发表于 12-08 09:49 1541次阅读

    碳化硅器件介绍与仿真

    本推文主要介碳化硅器件,想要入门碳化硅器件的同学可以学习了解。
    的头像 发表于 11-27 17:48 1487次阅读
    <b class='flag-5'>碳化硅</b>器件介绍与仿真

    东风首批自主碳化硅功率模块下线

    这是纳米碳化硅模块烧结工艺,使用铜键合技术,高性能氮化硅陶瓷衬板和定制化pin-fin散热铜基板,热电阻现有工程相比改善了10%以上,工作温度可达175igbt模块相比损失大幅减少40%以上,车辆行驶距离5 - 8%提高了。
    的头像 发表于 11-02 11:19 484次阅读