0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于Zynq RFSoC的数字基带验证毫米波 RF 电子器件

MATLAB 来源:MathWorks 作者:Matthew Weiner, RF Pi 2021-09-03 09:42 次阅读

作者:Matthew Weiner,RF Pixels

新兴的 5G 网络依托毫米波频谱运行,这意味着 5G 网络的性能优于 4G 网络,能够以更高的速度、更低的延迟传输更多数据。

毫米波频谱技术发展前景广阔,但也使设备制造商面临大量设计挑战。例如,相比低频信号,毫米波频谱信号更易因大气及其他物体的阻隔而衰减。

我和我的同事正在开发配有专用 RF 电子硬件射频前端,该硬件可以通过波束成形聚焦毫米波信号功率来克服这种衰减。我们的设计将融合多用户与多输入多输出 (MU-MIMO) 技术。

为了测试及验证这些设计,我们在 MATLABSimulink 中实现自主研发的数字基带(图 1)。为加快实现过程,我们对 Wireless HDL Toolbox 提供的 LTE 黄金参考模型进行调整,然后使用 HDL Coder 将其部署到 Zynq UltraScale+ RFSoC 板。我们通过这种方法,不但节省了至少一年的工程工作量,而且凭一己之力完成了实现过程,无需额外聘请数字工程师

3e2ced2a-0bed-11ec-8fb8-12bb97331649.png

图 1.在 Simulink 中建模的 LTE 数字基带接收链。

数字基带建模和仿真

Wireless HDL Toolbox 自带 LTE 黄金参考模型,即装即用,其中提供了大量关键功能,比如主信息块 (MIB) 解码。我利用这些功能构建自定义类 4G OFDM 收发机链,对现有的定时恢复、载波恢复和均衡功能进行增强。

我使用 Wireless HDL Toolbox 中的简单信道模型来仿真收发机链。这些仿真让我能评估并可视化一些指标,如不同噪音水平的误符号率 (SER) 和误差矢量幅度 (EVM)(图 2),从而得以验证基带模型。

3e950892-0bed-11ec-8fb8-12bb97331649.png

图 2.EVM(左)和 SER(右)随信噪比 (SNR) 变化的关系图。

在 Zynq RFSoC 硬件上实现基带

通过 Simulink 仿真验证数字模型后,我使用 HDL Coder 从模型生成 RTL 代码,将其部署到 Zynq UltraScale+ RFSoC ZCU111 板。生成的代码高效且可读。我按如下方法验证实现:对 Zynq 板的 FPGA 执行数字回环测试,将传输输出直接传递回接收链。完成这些测试后,我还执行了模拟回环测试,将模数转换器ADC) 和数模转换器DAC) 集成到板上。

之后,我可以运行完整的板对板测试,探索 RF 损伤的影响,使用 MATLAB 分析从板上捕获的数据、生成星座图并评估算法增强功能以解决损伤问题。

快速设计迭代

过去,我一直按照传统流程开展工作:系统团队生成设计,再由 RTL 团队加以实现。在这种工作流程中,迭代往往要花很长的时间;实现并重测算法更改可能需要数周之久。使用 MATLAB 和 Simulink 后,迭代速度大大加快;少则一天、多则不过数日,我就能实现并重测增强功能。

有一次,我发现尽管系统在启动后很快实现良好运转,但误码率 (BER) 却一直在稳步升高。为了诊断问题,我在启动后按不同的时间间隔从 ADC 采集数据并用 MATLAB 加以分析。星座图清楚地表明,随着时间的推移,性能不断下降。

我断定,此类问题与采样率偏移有关,因而导致逐渐偏离 LTE 帧循环前缀区域。我对算法进行了简单调整,以跟踪主同步信号。我通过仿真验证此修复,然后在板上实现;之后,无论系统运行多久,BER 始终保持在较低水平。

之后,我发现存在 IQ 增益和相位不平衡的问题。尽管我们自认为已对系统进行精确校准以避免出现 IQ 不平衡的问题,但我发现校准参数值并不准确。我在 MATLAB 中重新对采集的数据进行了分析,又在 MATLAB 中执行快速暴力搜索,希望找到合适的校准值来纠正问题。只用了几分钟的时间,我不仅更新了 Simulink 模型以实现更改,还生成了验证实时硬件修复的代码。

计划的功能增强

我们计划打造 5G 版数字基带并积极扩展 RF 技术,以满足 O-RAN 联盟制定的开放无线接入网规格要求。在设计中采用 O-RAN 接口后,哪怕性能不断提升、功能不断增加,我们的 IP 也能轻松集成到其他系统。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • HDL
    HDL
    +关注

    关注

    8

    文章

    322

    浏览量

    47101
  • 毫米波
    +关注

    关注

    21

    文章

    1857

    浏览量

    64037
  • 5G
    5G
    +关注

    关注

    1340

    文章

    47793

    浏览量

    553838
  • MU-MIMO
    +关注

    关注

    1

    文章

    11

    浏览量

    15956

原文标题:MATLAB 芯思路 | 依托基于 Zynq RFSoC 的数字基带验证毫米波 RF 电子器件

文章出处:【微信号:MATLAB,微信公众号:MATLAB】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    使用ST60的60 GHz RF毫米波段与现在的WiFi6相比,产品的功率密度如何?

    使用ST60的60 GHz RF毫米波段与现在的WiFi6相比,产品的功率密度如何?
    发表于 03-29 06:54

    简单认识毫米波器件

    又可以细分为Ka频段(26.5~40GHz)、U频段 (40~60GHz)、V频段(50~75GHz)、W 频段(75-110GHz)和T频段(110~180GHz)等。由于具有波长短、波束窄的特性,天气变化对于毫米波器件性能的影响有限,因此
    的头像 发表于 01-04 11:23 332次阅读

    Xilinx ZYNQ UltraScale+RFSoCZU27DR 开源RFSOC算法验证评估板

    6.554 GSPS DAC 端口提供支持。 RF发送和RF接收端口通过高性能SMA侧插RF连接器对外连接,以ZYNQ UltraScale RFS
    发表于 08-25 15:11

    #毫米波雷达 为智能家居、智慧康养行业带来新可能

    毫米波雷达
    Micradar云帆瑞达
    发布于 :2023年07月18日 15:49:10

    Zynq UltraScale+ RFSoC器件介绍

    介绍一下Xilinx公司的新一代Zynq UltraScale+ RFSoC器件,可用于LTE、5G、SDR、卫星通信等无线平台。
    的头像 发表于 05-22 10:38 4204次阅读
    <b class='flag-5'>Zynq</b> UltraScale+ <b class='flag-5'>RFSoC</b><b class='flag-5'>器件</b>介绍

    深圳市易感人工智能毫米波雷达展示# 毫米波雷达应用

    毫米波雷达
    jf_87932468
    发布于 :2023年05月20日 15:05:43

    毫米波芯片测量液位物位的解决方案

    毫米波雷达技术方案 芯片介绍 ADT3102(77Ghz毫米波雷达芯片) 单芯片集成2路收2路发射频通道,FMCW产生器,ADC,DSP,MCU(ARM、M3)等 集成了SPI、UART等多种接口
    发表于 05-09 10:32

    了解毫米波“移相”--之三

    性,以及电子相位控制的快速扫描特性刚好可以在卫星通信中一显身手。在SpaceX公司星链系统中,就使用了工作于毫米波的相控阵系统。 图:星链系统所使用的地面站以及低轨卫星系统 星链系统将其地面站称为
    发表于 05-08 10:54

    了解毫米波 -- 之一

    是优点,但在移动通信中却是致命缺点。造成毫米波只能用做“视距传输”,而无法进行绕射传输。 图:毫米波传输,容易受到物体干扰 特点四:电路尺寸小 在射频微波电路的实现中,所用到的元器件值通常与电路工作
    发表于 05-05 11:22

    5G毫米波有哪些优势?

    优势,能够充分释放5G的全部潜能,从而实现业务体验的提升和千行百业的数字化转型,真正实现“4G改变生活、5G改变社会”的愿景。毫米波和中低频段的Sub-6GHz都有各自的技术优势,5G毫米波
    发表于 05-05 10:49

    哪些毫米波频率会被5G采用呢?

    进的DAC和ADC来捕获高达2GHz的连续带宽。目前市场上的一些射频集成电路包含了可将基带毫米波频率相互转换的芯片,但选择非常有限,而且大部分覆盖免许可的60GHz频带。工程师们可以使用IF和RF级来
    发表于 05-05 09:52

    微波放大器/毫米波放大器如何选择PCB材料

    是严格控制电路材料厚度的标志。 感受热 无论是在微波频率还是在毫米波频段下,无论温度变化是由来自运行环境还是由PA自身的有源器件,如功率晶体管或IC造成的,PA电路都容易受到温度变化带来的性能变化的影响。在
    发表于 04-28 11:44