0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于MOSFET的开关特性你们了解多少

0GkM_KIA 来源:数字逻辑 作者:数字逻辑 2021-07-23 09:44 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

MOSFET的开关特性解析|必看

MOS管最显著的特点也是具有放大能力。不过它是通过栅极电压uGS控制其工作状态的,是一种具有放大特性的由电压uGS控制的开关元件。

1、静态特性

MOS管作为开关元件,同样是工作在截止或导通两种状态。由于MOS管是电压控制元件,所以主要由栅源电压uGS决定其工作状态。图下(a)为由NMOS增强型管构成的开关电路

246d72b8-e115-11eb-9e57-12bb97331649.jpg

2、 漏极特性

反映漏极电流iD和漏极-源极间电压uDS之间关系的曲线族叫做漏极特性曲线,简称为漏极特性,也就是表示函数 iD=f(uDS)|uGS的几何图形,如图(a)所示。

当uGS为零或很小时,由于漏极D和源极S之间是两个背靠背的PN结,即使在漏极加上正电压(uDS》0V),MOS管中也不会有电流,也即管子处在截止状态。

当uGS大于开启电压UTN时,MOS管就导通了。因为在UGS=UTN时,栅极和衬底之间产生的电场已增加到足够强的程度,把P型衬底中的电子吸引到交界面处,形成的N型层——反型层,把两个N+区连接起来,也即沟通了漏极和源极。

所以,称此管为N沟道增强型MOS管。可变电阻区:当uGS》UTN后,在uDS比较小时,iD与uDS成近似线性关系,因此可把漏极和源极之间看成是一个可由uGS进行控制的电阻,uGS越大,曲线越陡,等效电阻越小,如图(a)所示。

恒流区(饱和区):当uGS》UTN后,在uDS比较大时,iD仅决定于uGS(饱和),而与uDS几乎无关,特性曲线近似水平线,D、S之间可以看成为一个受uGS控制的电流源。在数字电路中,MOS管不是工作在截止区,就是工作在可变电阻区,恒流区只是一种瞬间即逝的过度状态。

3、转移特性

反映漏极电流iD和栅源电压uGS关系的曲线叫做转移特性曲线,简称为转移特性,也就是表示函数 iD=f(uGS)|uDS的几何图形,如图(b )所示。当uGS《utn时,mos管是截止的。当ugs》UTN之后,只要在恒流区,转移特性曲线基本上是重合在一起的。曲线越陡,表示uGS对iD的控制作用越强,也即放大作用越强,且常用转移特性曲线的斜率跨导gm来表示。《/utn时,mos管是截止的。当ugs》

MOSFET开关power on 漏电问题

这是一个等电压转换开关。由单片机去控制从3V3STBY到3V3SW的pmos 开关。

24d4425e-e115-11eb-9e57-12bb97331649.jpg

如下图,power on的过程中3V3SW power rail, 有一个voltage dip. 对比3V3SW_EN(blue),发现在turn on 控制信号到来之前,3V3SW上就有电压了。

24e6985a-e115-11eb-9e57-12bb97331649.jpg

示波器测量发现,3V3SW_EN控制信号pull high之前,mosfet gate电压(green)和3V3之间有1.1V左右的gap, 原则上在控制电压到来之前Vgate=3V3, 这样Vgs《Vth, mosfet不导通。

2570b094-e115-11eb-9e57-12bb97331649.jpg

查阅mosfet 手册,Vth最小0.4V。由此可见,Vgs之间压差导致漏电。

去掉电路中的C986和C985之后,问题得到解决(最终方案C985换成了1nf的小电容)。

257d4570-e115-11eb-9e57-12bb97331649.jpg

MOSFET的开关特性

如下是mosfet的等效模型,Gate 和Drian、Source之间分别有寄生的电容Cgd和Cgs。这两个寄生电容直接影响着mosfet的开关特性。

25af4656-e115-11eb-9e57-12bb97331649.jpg

有些mosfet手册上关于这两个寄生电容用Q来表示。

下图是MOSFET trun on的整个过程:

25bba928-e115-11eb-9e57-12bb97331649.jpg

Total 分为4个区域

Region 1, VGS 开始增加,这个时候还没有到达Vth, 所以VSD保持不变,ID还是零。t1时刻,VGS=Vth

Region2, VGS 达到Vth以后, mosfet 开始导通,ID开始有电流。由于gate和source之间寄生电容的存在,gate的电压开始给Cgs充电,达到t2的时候,Cgs 冲满,VGS达到稳定值,ID达到最大。

Region3, VGS继续保持不变,Cgd开始充电,VSD之间的压差开始减少,到达t3的时候,Cgd充满了,VSD压差几乎到达最小值,这个时刻mosfet 完全导通。

Region4, VGS持续增大到驱动电压,VSD之间的压差=Rdson*ID.

从这个过程可以看到,如果要控制VSD的slew rate 可以控制region3的时间。Cgd增大,VSD slow rate就越小,当然in-rush current 也越小。

当然这也是为什么最上面的电路drain和gate之间有一个电容的原因,考虑到mosfet本身的寄生Cgd可能会比较小,增加这样一个电容可以控制开关的slew rate。

回到上面的问题,由于电路中C985 C986都放了0.1uf,比较大,3V3STBY上升的过程中Gate电平没有快速达到3.3V,导致漏电。减少容值,可解决问题。

在有些电路中为了避免上述问题,可以加一个二极管快速导通使gate电压快速达到和source一致。

25c8dbe8-e115-11eb-9e57-12bb97331649.jpg

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    150

    文章

    9411

    浏览量

    229486

原文标题:MOSFET的开关特性解析|必看

文章出处:【微信号:KIA半导体,微信公众号:KIA半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MOSFET:电子世界的“开关大师”与技术演进

    开关特性和稳定的控制性能,支撑着整个电子信息产业的运转。对于电子工程相关专业的学生和行业从业者而言,深入理解MOSFET的技术本质、发展脉络与应用逻辑,既是夯实专
    的头像 发表于 11-27 15:48 194次阅读
    <b class='flag-5'>MOSFET</b>:电子世界的“<b class='flag-5'>开关</b>大师”与技术演进

    还在为高频大电流电源设计头疼?SiLM27213CB-DG专用MOSFET门极驱动器如何解锁效率新高度?

    (SiLM27213系列) 专用MOSFET门极驱动器,可能就是突破你设计瓶颈的那把钥匙!它主打 “宽电压、大电流、高集成” ,专为挑战高频高效率开关电源的极限而生。它凭什么能解决我们的痛点?来看几大硬核特性
    发表于 07-05 08:55

    开关速度看MOSFET在高频应用中的性能表现

    一、MOSFET开关速度的定义与影响因素开关速度是MOSFET在导通(开)和关断(关)状态之间的切换速度,通常以上升时间(tr)、下降时间(tf)和
    的头像 发表于 07-01 14:12 589次阅读
    从<b class='flag-5'>开关</b>速度看<b class='flag-5'>MOSFET</b>在高频应用中的性能表现

    CoolSiC™ MOSFET G2导通特性解析

    问题。今天的文章将会主要聚集在G2的导通特性上。在MOSFET设计选型过程中,工程师往往会以MOSFET常温下漏源极导通电阻RDS(on)作为第一评价要素。RDS(o
    的头像 发表于 06-16 17:34 624次阅读
    CoolSiC™ <b class='flag-5'>MOSFET</b> G2导通<b class='flag-5'>特性</b>解析

    基本半导体碳化硅 MOSFET 的 Eoff 特性及其在电力电子领域的应用

    。其中,关断损耗(Eoff)作为衡量器件开关性能的重要指标,直接影响着系统的效率、发热和可靠性。本文将聚焦于基本半导体碳化硅 MOSFET 的 Eoff 特性,深入探讨其技术优势及在电力电子领域的广泛应用。 倾佳电子杨茜致力于推
    的头像 发表于 06-10 08:38 741次阅读
    基本半导体碳化硅 <b class='flag-5'>MOSFET</b> 的 Eoff <b class='flag-5'>特性</b>及其在电力电子领域的应用

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    0  引言SiC-MOSFET 开关模块(简称“SiC 模块”)由于其高开关速度、高耐压、低损耗的特点特别适合于高频、大功率的应用场合。相比 Si-IGBT, SiC-MOSFET
    发表于 04-23 11:25

    SiC MOSFET的动态特性

    本文详细介绍了SiC MOSFET的动态特性。包括阈值电压特性、开通和关断特性以及体二极管的反向恢复特性。此外,还应注意测试波形的准确性。
    的头像 发表于 03-26 16:52 1680次阅读
    SiC <b class='flag-5'>MOSFET</b>的动态<b class='flag-5'>特性</b>

    MOSFET与IGBT的区别

    (零电压转换) 拓扑中的开关损耗,并对电路和器件特性相关的三个主要功率开关损耗—导通损耗、传导损耗和关断损耗进行描述。此外,还通过举例说明二极管的恢复特性是决定
    发表于 03-25 13:43

    MOSFET开关损耗计算

    )与电源转换技术来提高电源转换效率之外,新式功率器件在高效能转换器中所扮演的重要角色,亦不容忽视。其中,Power MOSFET 目前已广泛应用于各种电源转换器中。本文将简述Power MOSFET特性
    发表于 03-24 15:03

    SiC MOSFET的静态特性

    商用的Si MOSFET耐压普遍不超过900V,而SiC拥有更高的击穿场强,在结构上可以减少芯片的厚度,从而较大幅度地降低MOSFET的通态电阻,使其耐压可以提高到几千伏甚至更高。本文带你了解其静态
    的头像 发表于 03-12 15:53 1349次阅读
    SiC <b class='flag-5'>MOSFET</b>的静态<b class='flag-5'>特性</b>

    MOSFET开关损耗和主导参数

    过程中MOSFET开关损耗功率MOSFET的栅极电荷特性如图1所示。值得注意的是:下面的开通过程对应着BUCK变换器上管的开通状态,对于下管是0电压开通,因此
    发表于 02-26 14:41

    SiC MOSFET的参数特性

    碳化硅(SiC)MOSFET作为宽禁带半导体材料(WBG)的一种,具有许多优异的参数特性,这些特性使其在高压、高速、高温等应用中表现出色。本文将详细探讨SiC MOSFET的主要参数
    的头像 发表于 02-02 13:48 2349次阅读

    Si IGBT和SiC MOSFET混合器件特性解析

    大电流 Si IGBT 和小电流 SiC MOSFET 两者并联形成的混合器件实现了功率器件性能和成本的折衷。 但是SIC MOS和Si IGBT的器件特性很大不同。为了尽可能在不同工况下分别利用
    的头像 发表于 01-21 11:03 2415次阅读
    Si IGBT和SiC <b class='flag-5'>MOSFET</b>混合器件<b class='flag-5'>特性</b>解析

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性
    发表于 01-04 12:37

    Diode的反向恢复特性的机理和模型原理

    MOSFET、同步 Buck 变换器的续流开关管、以及次级同步整流开关管,其体内寄生的二极管都会经历反向电流恢复的过程。功率 MOSFET 的体二极管的反向恢复的
    的头像 发表于 01-03 10:36 1838次阅读
    Diode的反向恢复<b class='flag-5'>特性</b>的机理和模型原理