0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一文深度解析AD9361增益控制

FPGA之家 来源:FPGA技术江湖 作者:FPGA技术江湖 2021-05-08 11:04 次阅读

Overview

功能与寄存器之间的关系说明

e09b7cac-af27-11eb-bf61-12bb97331649.png

发射功率控制

TX功率由TX通路的模拟衰减值和数字衰减值控制。

模拟衰减

模拟衰减值由9bit二进制数决定,有效范围359个等级,每个等级衰减0.25dB, 模拟链路总共衰减范围是89.75dB。

TX1衰减值寄存器:0x074[D0]+0x073[D7:D0]

TX2 衰减值寄存器:0x076[D0]+0x075[D7:D0]

e0cce60c-af27-11eb-bf61-12bb97331649.png

数字衰减

数字衰减值由寄存器0x079[D4:D0]控制,0x079[D6]=1表示TX1衰减值等于TX2,0x079[D6]=0表示TX1通道衰减生效。

接收增益控制

e0dc9e6c-af27-11eb-bf61-12bb97331649.png

接收链路增益控制模块

AD9361接收增益的调整是由模拟增益和数字增益共同决定的,控制方式为:自动控制和手动控制,增益调整范围为90dB,数字增益最大为31dB,模拟增益最大为76dB,增益分配是由查找表决定的,查找表也有单表模式和多表模式。

低功率门限

低功率门限对两个接收通道同时有效。

门限范围:0至-63.5dBFS,控制精度0.5dBFS/LSB。

门限值寄存器地址0x114,0x114[D6:D0]=128档门限值。

低功率门限可应用于快速AGC(fast attack AGC)和手动AGC(MGC)两种模式

fast attack AGC:当检测到功率低于门限时,flag非立刻生效,只有在低功率持续一个时间段后生效。持续时间=0x11B

MGC:只要低于功率门限,flag立即生效。

平均功率测量

平均功率测量方法使抽取一系列样本取平均,抽取样本的持续周期由寄存器设置,地址0x15c[D3:D0]

e0edecd0-af27-11eb-bf61-12bb97331649.png

峰值功率检测时间

一般地,通过峰值超出持续时间来控制增益。通过RX的FIR滤波器时钟频率(clkRF)对信号峰值采样,峰值超出时间记录在0x0FE[D4:D0]

Delay设置

功率检测在RX-FIR滤波器前进行。当增益设置改变时功率测量需要维持时延,以便RX-FIR之前的模块完成准备。Delay=0x111[D4:D0]*2,时钟频率为clkRF

e0fd9e0a-af27-11eb-bf61-12bb97331649.png

增益表(Gain Table)

AD9361增益分为数字增益和模拟增益两部分,且两部分独立控制。

模拟增益表有两种模式:整体表(full table)和分立表(split table),两种模式选择由寄存器0x0FB[D3]控制。

Full模式指接收通道的所有增益由value来体现;

split模式将接收通道增益分为LMT(LAN、MIXER、TIA)和LPF两个独立部分。

e10bbe22-af27-11eb-bf61-12bb97331649.png

Full table mode

在full模式下,改变总体增益值,比如由60改成59,链路中增益模块(LNA、TIA、LPF…)的参数可能都会改变。
通过SPI可读取增益值,0x2B0[D6:D0]指示RX1的增益,0x2B5[D6:D0]指示RX2的增益。
最大的full模式下的增益可在寄存器0x0FD中设置,最大值为76(十进制)。如果在split模式下该寄存器最大值是40(十进制)

e15763ea-af27-11eb-bf61-12bb97331649.png

Split Table Mode

Split模式下模拟总增益最大值可由寄存器0x0FD设置,最大值为40(十进制),由LMT和LPF两部分组成。

RX1的LMT增益可通过0x2B0[D6:D0]设置;LPF增益可通过0x2B1[D4:D0]设置,范围0到24(十进制)。RX2的LMT增益可通过0x2B5[D6:D0]设置;LPF增益可通过0x2B6[D4:D0]设置,范围0到24(十进制)。

注意:split模式下的增益不是简单的LMT GAIN+LPF GAIN。增加LMT增益1dB,可能不会导致整体增益增加1dB。

e1630542-af27-11eb-bf61-12bb97331649.png

数字增益

数字增益使能标志位0x0FB[D2],寄存器0x100[D4:D0]可设置最大增益值,且不超过31.
由于数字增益不会恶化SNR,在链路总增益固定的情形下,可以通过增加数字增益,减小模拟增益来优化链路性能。

注意:

当寄存器0x10B[D5]=1时,无论数字增益标志位0x0FB[D2]为何值,RX1通道数字增益强制为0x10B[D4:D0];

当寄存器0x10E[D5]=1时,无论数字增益标志位0x0FB[D2]为何值,RX2通道数字增益强制为0x10E[D4:D0];

手动增益控制(MANUAL GAIN CONTROL (MGC)MODE)

MGC有两种控制方式,一种是SPI直接写入增益值,另一种是通过指针查表方式查找合适增益值。MGC模式由寄存器0x0FA后四位使能,0x0FA[D3:D2]=00,RX2进入MGC模式;0x0FA[D1:D0]=00,RX1进入MGC模式。

e1b91fb8-af27-11eb-bf61-12bb97331649.png

注意:MGC控制方法:

设置0x0FA[D3:D0],使RX1、RX2进入MGC模式;

0x0FC[D7:D5]的值是MGC增益指针查表时增加的步径,0x0FE[D7:D5]的值是MGC增益指针查表时减小的步径。

MGC方式下的full table 模式

MGC方式下的split table 模式

SPI 直接写入增益值

LMTRX1控制寄存器地址0x109,

LMT RX2=0x10C,

LPF RX1=0x10A, LPF RX2=0x10D,

Digtal RX1=0x10B, Digtal RX2=0x10E,

指针查表方式改变增益

在这种模式下存在一个问题,那就是查表时首先改变哪部分(LMTLPF)的增益,这由寄存器0x0FC[D4:D3]来确定。

如果0x0FC[D3]=0,则0x0FC[D4]=1改变LMT增益,0x0FC[D4]=0改变LPF增益.

如果0x0FC[D3]=1,则0x0FC[D4]状态忽略,由峰值功率检测机制(AD9361 peak detectors)决定改变LMT还是LPF增益。在这种模式下由寄存器0x11A将 LMT增益分为Upper和Lower两部分。

AGC 慢速控制(Slow attack)

应用场景:在FDD场景下。

设置方法:

0x0FA[D4]=0,确保不进入“Slow Attack Hybrid Mode”

RX1:0x0FA[D3:D2]=10; RX2:0x0FA[D1:D0]=10

AGC Slow attack 控制环

e1d2118a-af27-11eb-bf61-12bb97331649.png

设置增益更新时间

在0x124和0x125中设置更新时间,并以RFclk时钟计数,当达到0x124的value时,链路增益值更新。

Slow attack AGC模式下的full gain table

Slow 模式功率过载时,单增益表控制增益方式如下:

e222ac44-af27-11eb-bf61-12bb97331649.png

Slow attack AGC模式下的split gain table

如果gain在LPF表中变化,步径=0x106[D3:D0],如果gain在LMT表中变化,步径=0x103[D4:D2]

e2714b38-af27-11eb-bf61-12bb97331649.png

AGC混合控制模式

该模式是slow 模式,但是增益更新不受时间限制,只要BBP 拉高 CTRL_IN2 信号,则增益表更新。

设置方法:

0x0FA[D4]=1

RX2使能0x0FA[D3:D2]=11;RX1使能0x0FA[D1:D0]=11

AGC快速控制模式(fast attack mode)

AGC fast attack mode对过载的响应非常快,这样当信号的数据部分到达时,AGC就能稳定到最佳增益指标。

AGC是通过状态机实现增益锁定,如果状态机几个状态完成还没有锁定增益,则返回状态机复位状态。状态机如下图:

e27d03f6-af27-11eb-bf61-12bb97331649.png

STATE0

复位状态,当9361没有进入RX状态时,状态机停留在这一状态。

STATE1

进入RX状态,状态机做一个时延使进入gain侦查准备。时延值寄存器地址0x022

检测峰值功率是否过载,检测时间值=0x117[D4:D0],如果不过载则进入状态2

检测到峰值功率过载,调节机制如下:

e2b441d6-af27-11eb-bf61-12bb97331649.png

STATE2

在HB1输出处测量平均功率值,打开各功率过载检测器,一旦发现过载则返回状态1;

平均功率如果低于“低功率门限值”,启动增益增加机制。完成增益增加后返回状态1;

平均功率值与0x101比较,然后调整增益使之与平均功率匹配。链路最大增益由0x118确定。

在 full table模式下,增益调整直接增益参数。Flit模式下,如果0x111[D6]=1,执行如下操作:

e2ca7ce4-af27-11eb-bf61-12bb97331649.png

如果0x111[D6]=0,则只有LPF的增益值改变使之匹配平均功率值

STATE3

状态机进入增益锁定状态,功率过载检测机制继续进行。如果功率过载或者过低,增益进入非锁定状态。功率过低响应机制和state2一样。

STATE4

状态3检测到功率过载进入状态4,状态4下增益调整可以在单表(full table)和分表(split table)模式下进行。调整步径发生改变,由寄存器0x112[D7:D6],0x113[D7:D5]确定。

STATE5

在此状态下,增益是锁定状态。平均功率检测周期发生变化,由寄存器0x109[D7],0x10A[D7:D5]控制功率检测周期。

未完待续

太难了。。。原创不易,摸索更不易,如果对您有帮助,欢迎点赞,在看,转发也是对作者的支持与厚爱,感谢!

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AGC
    AGC
    +关注

    关注

    0

    文章

    151

    浏览量

    51229
  • 寄存器
    +关注

    关注

    30

    文章

    5037

    浏览量

    117765
  • 功率
    +关注

    关注

    13

    文章

    2003

    浏览量

    68744
  • RX
    RX
    +关注

    关注

    0

    文章

    62

    浏览量

    18607

原文标题:深度解析,AD9361增益控制详解

文章出处:【微信号:zhuyandz,微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AD9361和AD9371里接收机的性能有哪些不同呢?

    话说,如果使用CMOS工艺的话,零中频的闪烁噪声会比较大,如果使用SiGe和BiCMOS工艺的话,闪烁噪声就会小很多[1]。所以,我就打算看看AD9361和AD9371这两个芯片的工艺。
    的头像 发表于 04-17 11:22 225次阅读
    <b class='flag-5'>AD9361</b>和AD9371里接收机的性能有哪些不同呢?

    AD9361 BBPLL锁相环失锁(Z706)

    各位好! 我在尝试用FPGA直接配置AD9361,但是BBPLL直失锁,具体问题如下: 这是9361配置表,在9361初始化时,index
    发表于 03-25 16:14

    ad9361 ADC采样率设置范围

    AD9361是一款高性能的射频前端芯片,广泛应用于无线通信系统中。其中一个重要特性是其具有灵活可调的ADC采样率。本文将详细介绍AD9361的ADC采样率设置范围,包括其相关特性、设置方法以及在实际
    的头像 发表于 01-04 09:37 1685次阅读

    AD9361 开发板电路图 电路原理图

    AD9361 开发板电路图 电路原理图 AD9361电路图 TCM1-63AX+ PIN TO PIN CH-BTM163A 替代型号电路图
    发表于 01-02 11:46

    ad9361接收电平范围

    AD9361是一种宽频带软件可定义收发器芯片,由ADI(Analog Devices Inc.)公司研发,可用于各种射频(RF)应用。它是一种全集成的射频收发器,实现了收发器功能。在这篇文章中,我们
    的头像 发表于 12-26 15:49 1192次阅读

    求助,关于多片AD9361参考时钟和External LO的问题

    当试图另两片AD9361的LO和BB时钟相位固定时,手册上提供了两种办法,个是两片AD9361的XTALN共源(低频30Mhz-80Mhz),然后片内的TxRFPLL/RxRFPLL/BBPLL
    发表于 12-13 07:51

    AD9361时延响应特性不固定如何优化?

    利用AD9361进行扩频信号的收发自闭环实验,测试发现,AD9361工作在AGC模式下,接收链路时延随接收信号功率变化(时延变化量超过0.1ns)。后调成MGC模式,手动控制接收链路为固定增益
    发表于 12-12 07:36

    多片AD9361同步后相位随机翻转是哪里的问题?

    调试过程中发现:多片AD9361同步后,段时间内相位恒定,散热风扇撤掉或者一二十分钟后会有片子相位翻转180°,片子位号随机,请问下这个是片子本身特性还是散热影响(若散热影响,麻烦告知影响机理),又或者代码哪里未设置对?期待
    发表于 12-07 07:36

    AD9361外部晶振是否有推荐的?是否有参考电路?

    AD9361外部晶振是否有推荐的?是否有参考电路? 谢谢!!
    发表于 12-07 07:03

    AD9361输出无信号是为什么?

    目前正在调试AD9361,然后发现在用3f4进入测试模式的时候有波形显示,然后关闭3f4,输出和输入都无波形。并且在下载程序后瞬间可以看到示波器有正弦出现。然后我用的是12\'fhhh配置的单音
    发表于 12-06 06:38

    AD9361正弦波回环错误的原因?

    我使用AD9361器件,在数字输入接口自回环,发现自增数回环正常,正弦波回环错误。不明白问题原因!
    发表于 12-04 06:22

    ad9361输出信号异常

    各位大佬好,我最近在调试ad9361,试了下输出个480k的频率,载波频率是2250.5M,上变频后频率应该是2250.5M+-480k,但是在频谱仪上看到他的载波频率还是很高,按照
    发表于 11-01 14:29

    AD9361的上变频怎么设置?怎么确定频率变成多少?

    AD9361的上变频怎么设置,怎么确定频率变成多少?
    发表于 10-18 07:17

    关于AD9361的抗阻塞能力的实测

    在窄带应用中,零中频软件无线电芯片已经非常流行,其代表是ADI公司的AD9361
    的头像 发表于 05-26 10:17 1743次阅读

    用于3G和4G基站应用的AD9361频率(RF)捷变收发器

    AD9361接收机LO的工作频率范围为70 MHz至6.0 GHz,发射机LO工作频率范围为47 MHz至6.0 GHz范围,涵盖大多数授权和未授权频段。频道支持小于200 kHz至56 MHz的带宽。
    发表于 05-16 14:28 640次阅读