0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于激光雷达传感器如何投影成二维图像

新机器视觉 来源:CSDN技术社区 作者:W_Tortoise 2021-04-03 09:58 次阅读

“前视图”投影

为了将激光雷达传感器的“前视图”展平为2D图像,必须将3D空间中的点投影到可以展开的圆柱形表面上,以形成平面。

2a6759e6-8e94-11eb-8b86-12bb97331649.png

2a9336d8-8e94-11eb-8b86-12bb97331649.png

问题在于这样做会将图像的接缝直接放在汽车的右侧。将接缝定位在汽车的最后部更有意义,因此前部和侧部更重要的区域是不间断的。让这些重要区域不间断将使卷积神经网络更容易识别那些重要区域中的整个对象。

以下代码解决了这个问题。

沿每个轴配置刻度

变量h r e s h_{res}和v r e s v_{res}非常依赖于所使用的LIDAR传感器。在KTTI数据集中,使用的传感器是Velodyne HDL 64E。根据Velodyne HDL 64E的规格表,它具有以下重要特征:

垂直视野为26.9度,分辨率为0.4度,垂直视野被分为传感器上方+2度,传感器下方-24.9度

360度的水平视野,分辨率为0.08-0.35(取决于旋转速度)

旋转速率可以选择在5-20Hz之间

可以按以下方式更新代码:

然而,这导致大约一半的点在x轴负方向上,并且大多数在y轴负方向上。为了投影到2D图像,需要将最小值设置为(0,0),所以需要做一些改变:

绘制二维图像

将3D点投影到2D坐标点,最小值为(0,0),可以将这些点数据绘制成2D图像。

完整代码

把上面所有的代码放在一个函数中。

def lidar_to_2d_front_view(points, v_res, h_res, v_fov, val=“depth”, cmap=“jet”, saveto=None, y_fudge=0.0 ): “”“ Takes points in 3D space from LIDAR data and projects them to a 2D ”front view“ image, and saves that image.

Args: points: (np array) The numpy array containing the lidar points. The shape should be Nx4 - Where N is the number of points, and - each point is specified by 4 values (x, y, z, reflectance) v_res: (float) vertical resolution of the lidar sensor used. h_res: (float) horizontal resolution of the lidar sensor used. v_fov: (tuple of two floats) (minimum_negative_angle, max_positive_angle) val: (str) What value to use to encode the points that get plotted. One of {”depth“, ”height“, ”reflectance“} cmap: (str) Color map to use to color code the `val` values. NOTE: Must be a value accepted by matplotlib‘s scatter function Examples: ”jet“, ”gray“ saveto: (str or None) If a string is provided, it saves the image as this filename. If None, then it just shows the image. y_fudge: (float) A hacky fudge factor to use if the theoretical calculations of vertical range do not match the actual data.

For a Velodyne HDL 64E, set this value to 5. ”“”

# DUMMY PROOFING assert len(v_fov) ==2, “v_fov must be list/tuple of length 2” assert v_fov[0] 《= 0, “first element in v_fov must be 0 or negative” assert val in {“depth”, “height”, “reflectance”}, ’val must be one of {“depth”, “height”, “reflectance”}‘

x_lidar = points[:, 0] y_lidar = points[:, 1] z_lidar = points[:, 2] r_lidar = points[:, 3] # Reflectance # Distance relative to origin when looked from top d_lidar = np.sqrt(x_lidar ** 2 + y_lidar ** 2) # Absolute distance relative to origin # d_lidar = np.sqrt(x_lidar ** 2 + y_lidar ** 2, z_lidar ** 2)

v_fov_total = -v_fov[0] + v_fov[1]

# Convert to Radians v_res_rad = v_res * (np.pi/180) h_res_rad = h_res * (np.pi/180)

# PROJECT INTO IMAGE COORDINATES x_img = np.arctan2(-y_lidar, x_lidar)/ h_res_rad y_img = np.arctan2(z_lidar, d_lidar)/ v_res_rad

# SHIFT COORDINATES TO MAKE 0,0 THE MINIMUM x_min = -360.0 / h_res / 2 # Theoretical min x value based on sensor specs x_img -= x_min # Shift x_max = 360.0 / h_res # Theoretical max x value after shifting

y_min = v_fov[0] / v_res # theoretical min y value based on sensor specs y_img -= y_min # Shift y_max = v_fov_total / v_res # Theoretical max x value after shifting

y_max += y_fudge # Fudge factor if the calculations based on # spec sheet do not match the range of # angles collected by in the data.

# WHAT DATA TO USE TO ENCODE THE VALUE FOR EACH PIXEL if val == “reflectance”: pixel_values = r_lidar elif val == “height”: pixel_values = z_lidar else: pixel_values = -d_lidar

# PLOT THE IMAGE cmap = “jet” # Color map to use dpi = 100 # Image resolution fig, ax = plt.subplots(figsize=(x_max/dpi, y_max/dpi), dpi=dpi) ax.scatter(x_img,y_img, s=1, c=pixel_values, linewidths=0, alpha=1, cmap=cmap) ax.set_axis_bgcolor((0, 0, 0)) # Set regions with no points to black ax.axis(’scaled‘) # {equal, scaled} ax.xaxis.set_visible(False) # Do not draw axis tick marks ax.yaxis.set_visible(False) # Do not draw axis tick marks plt.xlim([0, x_max]) # prevent drawing empty space outside of horizontal FOV plt.ylim([0, y_max]) # prevent drawing empty space outside of vertical FOV

if saveto is not None: fig.savefig(saveto, dpi=dpi, bbox_inches=’tight‘, pad_inches=0.0) else: fig.show()

以下是一些用例:

import matplotlib.pyplot as pltimport numpy as np

HRES = 0.35 # horizontal resolution (assuming 20Hz setting)VRES = 0.4 # vertical resVFOV = (-24.9, 2.0) # Field of view (-ve, +ve) along vertical axisY_FUDGE = 5 # y fudge factor for velodyne HDL 64E

lidar_to_2d_front_view(lidar, v_res=VRES, h_res=HRES, v_fov=VFOV, val=“depth”, saveto=“/tmp/lidar_depth.png”, y_fudge=Y_FUDGE)

lidar_to_2d_front_view(lidar, v_res=VRES, h_res=HRES, v_fov=VFOV, val=“height”, saveto=“/tmp/lidar_height.png”, y_fudge=Y_FUDGE)

lidar_to_2d_front_view(lidar, v_res=VRES, h_res=HRES, v_fov=VFOV, val=“reflectance”, saveto=“/tmp/lidar_reflectance.png”, y_fudge=Y_FUDGE)

产生以下三个图像:

Depth

2ac4628a-8e94-11eb-8b86-12bb97331649.png

Height

2afb4796-8e94-11eb-8b86-12bb97331649.png

Reflectance

2b4c7080-8e94-11eb-8b86-12bb97331649.png

后续操作步骤

目前创建每个图像非常慢,可能是因为matplotlib,它不能很好地处理大量的散点。

因此需要创建一个使用numpy或PIL的实现。

测试

需要安装python-pcl,加载PCD文件。

sudo apt-get install python-pip

sudo apt-get install python-dev

sudo pip install Cython==0.25.2

sudo pip install numpy

sudo apt-get install git

git clone https://github.com/strawlab/python-pcl.git

cd python-pcl/

python setup.py build_ext -i

python setup.py install

可惜,sudo pip install Cython==0.25.2这步报错:

Cannot uninstall ‘Cython’。 It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.”

换个方法,安装pypcd:

pip install pypcd

查看 https://pypi.org/project/pypcd/ ,用例如下:

Example-------

。. code:: python

import pypcd# also can read from file handles.pc = pypcd.PointCloud.from_path(’foo.pcd‘)# pc.pc_data has the data as a structured array# pc.fields, pc.count, etc have the metadata

# center the x fieldpc.pc_data[’x‘] -= pc.pc_data[’x‘].mean()

# save as binary compressedpc.save_pcd(’bar.pcd‘, compression=’binary_compressed‘)

测试数据结构:

“ 》》》 lidar = pypcd.PointCloud.from_path(‘~/pointcloud-processing/000000.pcd’)

》》》 lidar.pc_data

array([(18.323999404907227, 0.04899999871850014, 0.8289999961853027, 0.0),

(18.3439998626709, 0.10599999874830246, 0.8289999961853027, 0.0),

(51.29899978637695, 0.5049999952316284, 1.944000005722046, 0.0),

…,

(3.7139999866485596, -1.3910000324249268, -1.7330000400543213, 0.4099999964237213),

(3.9670000076293945, -1.4739999771118164, -1.8569999933242798, 0.0),

(0.0, 0.0, 0.0, 0.0)],

dtype=[(‘x’, ‘《f4’), (‘y’, ‘《f4’), (‘z’, ‘《f4’), (‘intensity’, ‘《f4’)])

》》》 lidar.pc_data[‘x’]

array([ 18.3239994 , 18.34399986, 51.29899979, …, 3.71399999,

3.96700001, 0. ], dtype=float32) ”

加载PCD:

import pypcd

lidar = pypcd.PointCloud.from_path(’000000.pcd‘)

x_lidar:

x_lidar = points[’x‘]

结果:

Depth

2bc5c4ee-8e94-11eb-8b86-12bb97331649.png

Height

2c287c7e-8e94-11eb-8b86-12bb97331649.png

Reflectance

2c7f18cc-8e94-11eb-8b86-12bb97331649.png

编辑:lyn

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2525

    文章

    48131

    浏览量

    740214
  • 投影
    +关注

    关注

    0

    文章

    135

    浏览量

    24563
  • 激光雷达
    +关注

    关注

    961

    文章

    3663

    浏览量

    186787

原文标题:点云处理——将激光雷达数据投影到二维图像

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AEye发布4Sight™ Flex下一代激光雷达传感器系列的首款产品Apollo

    据麦姆斯咨询报道,自适应、高性能激光雷达(LiDAR)解决方案全球领导者AEye(纳斯达克:LIDR)近日发布了4Sight™ Flex下一代激光雷达传感器系列的首款产品Apollo。
    的头像 发表于 04-01 09:43 187次阅读

    Phlux推出一种新型传感器以进军汽车激光雷达(LiDAR)市场

    英国初创公司Phlux Technology(以下简称“Phlux”)正致力于通过一种新型传感器进军汽车激光雷达(LiDAR)市场,并筹集项目资金。Phlux计划成为“激光雷达(LiDAR)中的英伟达(Nvidia)”。
    的头像 发表于 03-18 09:20 658次阅读

    华为激光雷达参数怎么设置

    华为激光雷达是一种常用的传感器技术,可用于距离测量和感应。它的参数设置对于确保其性能和功能至关重要。在本文中,我们将详细介绍华为激光雷达的参数设置以及其影响和应用。 首先,我们需要了解激光雷达
    的头像 发表于 01-19 14:17 600次阅读

    LabVIEW开发二维激光振镜扫描控制系统

    LabVIEW开发二维激光振镜扫描控制系统 本项建立一个二维激光振镜扫描控制系统,涵盖了光学系统和激光器的选择以及振镜驱动
    发表于 12-22 11:00

    单线激光雷达和多线激光雷达区别

    单线激光雷达和多线激光雷达区别  单线激光雷达和多线激光雷达是两种常用的激光雷达技术。它们在激光
    的头像 发表于 12-07 15:48 2527次阅读

    详解无人驾驶传感器:摄像头、激光雷达雷达、温度传感器

    详解无人驾驶传感器:摄像头、激光雷达雷达、温度传感器
    的头像 发表于 12-07 10:51 1018次阅读
    详解无人驾驶<b class='flag-5'>传感器</b>:摄像头、<b class='flag-5'>激光雷达</b>、<b class='flag-5'>雷达</b>、温度<b class='flag-5'>传感器</b>

    小米2D激光雷达拆解图讲解

    本文档的主要内容详细介绍的是小米的2D激光雷达拆解图和讲解。
    发表于 09-22 08:07

    一文通过AEC-Q102车规级芯片测试认证了解激光雷达核心技术及行业格局

    激光雷达被认为是L3 级及以上自动驾驶必备传感器 当前 L2 级自动驾驶感知系统主要由超声波雷达、毫米波雷达、摄像头等车载传感器组成。特斯拉
    发表于 09-19 13:35

    汽车传感器芯片之激光雷达概述

    激光雷达的物理原理本质上就是“距离=速度*时间”,通过测量激光信号的信号差和相位差来确定距离。相较于发射电磁波的毫米波雷达和发射机械波的超声波雷达
    发表于 09-18 11:01 1571次阅读
    汽车<b class='flag-5'>传感器</b>芯片之<b class='flag-5'>激光雷达</b>概述

    了解汽车传感器——激光雷达

    来源: 道合顺传感 编辑:感知芯视界 激光雷达概览 (1)发展历程 激光雷达LiDAR(Light Detection And Ranging)是激光探测及测距系统的简称,主要构成要素
    的头像 发表于 07-26 10:44 1108次阅读

    激光雷达是什么 激光雷达介绍

    激光雷达在自动驾驶应用中主要用来探测道路上的障碍物信息,把数据和信号传递给自动驾驶的大脑,再做出相应的驾驶动作,但室外常见的干扰因素如雨、雾、雪、粉尘、高低温等对激光雷达的识别造成了极大的影响。因此
    的头像 发表于 07-14 11:11 3515次阅读

    一文读懂汽车芯片—激光雷达

    激光雷达的物理原理本质上就是“距离=速度*时间”,通过测量激光信号的信号差和相位差来确定距离。相较于发射电磁波的毫米波雷达和发射机械波的超声波雷达
    的头像 发表于 07-11 16:21 1697次阅读
    一文读懂汽车芯片—<b class='flag-5'>激光雷达</b>

    如何将激光雷达传感器与Nucleo-64一起使用

    电子发烧友网站提供《如何将激光雷达传感器与Nucleo-64一起使用.zip》资料免费下载
    发表于 06-16 11:02 0次下载
    如何将<b class='flag-5'>激光雷达</b><b class='flag-5'>传感器</b>与Nucleo-64一起使用

    一文解析激光雷达结构

    激光雷达激光探测及测距系统,是通过发射激光束来探测目标位置、速度等特征量的雷达系统。按扫描维度,激光雷达可分为一维
    发表于 05-10 09:58 5943次阅读
    一文解析<b class='flag-5'>激光雷达</b>结构

    激光雷达和毫米波雷达的优势

    其实传感器之间,因为感知的原理不同,大家的赛道也不同,比如激光雷达的分工就是做精细的感知,做地图构建,检测马路牙子之类的,像扫街车要装激光雷达扫马路牙子。
    发表于 05-04 15:58 657次阅读