0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

反激CCM模式的开关电源MOS开关损耗推导过程

璟琰乀 来源:豆丁网 作者:doudwansui02 2021-03-24 09:45 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电源工程师们都知道开关MOS在整个电源系统里面的损耗占比是不小的,开关mos的的损耗我们谈及最多的就是开通损耗和关断损耗,由于这两个损耗不像导通损耗或驱动损耗一样那么直观,所有有部分人对于它计算还有些迷茫。

我们今天以反激CCM模式的开通损耗和关断损耗来把公式推导一番,希望能够给各位有所启发。

我们知道这个损耗是由于开通或者关断的那一个极短的时刻有电压和电流的交叉而引起的交越损耗,所以我们先得把交越波形得画出来,然后根据波形来一步步推导它的计算公式。

我们一起来看图

下图为电流与电压在开关时交叠的过程,这个图中描述的是其实是最恶劣的情况,开通时等mos管电流上升到I1之后mos管电压才开始下降,关断时等mos管电压上升到Vds后mos管电流才开始下降。

最恶劣的情况分析:

MfQZji.jpeg

mos管开通过程

阶段一:电压不变电流上升(电压为Vds不变,电流由0上升到Ip1)

mos开通瞬间,电流从零快速开始上升到Ip1,此过程MOS的DS电压不变为Vds;

阶段二:电流不变电压下降(电流为Ip1不变,电压由Vds下降到0)

电流上升到Ip1后,此时电流的上升斜率(Ip1-Ip2段)相对0-Ip1这一瞬间是非常缓慢的,我们可以近似把上升到Ip1之后继续上升的斜率认为是0,把电流基本认为是Ip1不变,此时MOS管的DS电压开始快速下降到0V。

mos管关断过程

阶段一:电流不变电压上升(电流为Ip2不变,电压由0上升到Vds)

电压从0快速开始上升到最高电压Vds,与开通同理此过程MOS的电流基本不变为Ip2;

阶段二:电压不变电流下降(点压为Vds不变,电流由Ip2下降到0)

电压此时为Vds不变,电流迅速从Ip2以很大的下降斜率降到0。

上面对最恶劣的开关情况做了分析,但是我根据个人的经验这只是一场误会,本人没发现有这种情况,所以我一般不用这种情况来计算开关损耗。

由于本人不用,所以对上述情况不做详细推导,下面直接给出最恶劣的情况的开通关断损耗的计算公式

myABBj.png

至于关断和开通的交越时间t下面会给出估算过程。

个人认为更符合实际情况的分析与推导

请看图

B3eIfi.jpeg

这种情况跟上一种情况的不同之处就在于:

开通时:电流0-Ip1上升的过程与电压Vds-0下降的过程同时发生。

关段时:电压0-Vds的上升过程与电流从Ip2-0的下降过程同时发生。

开通时的损耗推导

我们先把开通交越时间定位t1

我们大致看上去用平均法来计算好像直接可以看出来,Ip1/2 × Vds/2 *t1*fs,实际上这是不对的,这个过程实际上准确的计算是,在时间t内每一个瞬时的都对应一个功率,然后把这段时间内所有的瞬时功率累加然后再除以开关周期T或者乘以开关频率fs。好了思想有了就只剩下数学问题了,我们一起来看下。

IF7nYv.png

MrEfAj.png

下面我来说一下t1的估算方法

思路是根据MOS管datasheet给出的栅极总电荷量来计算时间t1

用公式Qg=i*t来计算

VjmIJn.jpeg

我们来看看上图是驱动的过程,Vth为MOS管的开通阈值,Vsp为MOS管的米勒平台,实际上MOS管从开始导通到饱和导通的过程是从驱动电压a点到b点这个区间。

其中栅极总电荷Gg是可以在mos管的datasheet中可以查询到的

zea2q2.png

然后就是要求这段时间的驱动电流,我们看下图,这个电流结合你的实际驱动电路来取值的。

3Qfiyq.jpeg

根据你的驱动电阻R1的值和米勒平台电压可以把电流i计算出来。

米勒平台电压Vsp也可以在MOS管的datasheet中可以查到。

Jn6Zzm.jpeg

然后再根据你的实际驱动电压(实际上就是近似等于芯片Vcc供电电压),实物电压做出来之前,在理论估算阶段可以自己先预设定一个,比如预设15V。

我们计算时把Vth到Vsp这一段把它近似看成都等于Vsp,然后就很好计算出i了。

i=(Vcc-Vsp)/R1

此刻驱动电流i已经求出,接下来计算平台时间(a点到b点)t1.

Qg=i*t1

t1=Qg/i

到此时基本差不多了

好了我们来总结一下开关MOS开通时的损耗计算公式

i=(Vcc-Vsp)/R1 计算平台处驱动电流

t1=Qg/i 计算平台的持续时间(也就是mos开通时,电压电流的交越时间)

Pon=1/6*Vds*Ip1*t1*fs

关断时的损耗

对于关断时的损耗计算跟开通时的损耗就算推导方式没什么区别,我在这里就不在赘述了,我给出一个简单的结果。

3Qfiyq.jpeg

i=(Vsp)/R2 计算平台处驱动电流

t1=Qg/i 计算平台的持续时间(也就是mos关断时,电压电流的交越时间)

Ptoff=1/6*Vds*Ip1*t1*fs

上文是针对反激CCM,对于DCM的计算方法是一样的,不过DCM下Ip1为0,开通损耗是可以忽略不计的,关断损耗计算方法一样。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 开关电源
    +关注

    关注

    6555

    文章

    8686

    浏览量

    495686
  • MOS
    MOS
    +关注

    关注

    32

    文章

    1638

    浏览量

    99803
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电源设计小贴士 设计 CCM 式转换器

    连续导通模式 (CCM) 式转换器通常用于中等功耗的隔离型应用。与不连续导通模式 (DCM) 运行相比,
    的头像 发表于 06-18 17:20 773次阅读
    <b class='flag-5'>电源</b>设计小贴士 设计 <b class='flag-5'>CCM</b> <b class='flag-5'>反</b><b class='flag-5'>激</b>式转换器

    替代UCC24612-1高频同步整流控制器支持有源钳位式、 QR/DCM/CCM式和LLC拓扑应用

    ( CCM) 循环极限预关闭进一步增强了CCM模式下的稳健运行能力。PC2812具有多个可提高效率的特性。 具有较短传播延迟的快速比较器可减少开关损耗。 9.5V栅极驱动器钳位可降低
    发表于 06-09 10:23

    开关电源的类型及其优缺点

    开关电源的电压和电流的输出特性要比正开关电源的差。
    的头像 发表于 05-16 14:38 2.2w次阅读
    <b class='flag-5'>开关电源</b>的类型及其优缺点

    基于PC817与TL431配合电流型开关电源环路补偿设计

    【文章摘要】 设计开关电源的反馈电路时,为了使其满足静态和动态指标的要求,负反馈环路补偿是开关电源设计的关键。文章以一款单输出的电流型
    发表于 05-12 16:10

    40W开关电源电路

    一、电路工作原理 电路的结构方框图 基本工作原理:交流220V输入电压经过整流滤波电路变成直流电压,再由开关功率管斩波和高频变压器
    发表于 04-18 14:14

    式、正式、推挽式、半桥式、全桥式开关电源的优点与缺点

    的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 开关电源的优点和缺点 1
    发表于 04-08 13:34

    开关电源和正的区分

    开关电源和正的区分 一、电感: 电感简单的说就是导电的螺旋线圈。电感种类比较多,有插脚的贴片的等等。 如图 1: 图 1 L1是有芯电感 L2是无芯电感的原理图画法,这里是讲
    发表于 04-03 13:49

    开关电源电路的基础知识

    在硬件面试经典中的第 86 题中提到的开关电源,是通过开关通断将交流转变成直流的 AD-DC 开关电源的一种,并且
    的头像 发表于 04-02 09:15 3277次阅读
    <b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>开关电源</b>电路的基础知识

    超详细的开关电源电路图讲解

    一, 先分类  开关电源的拓扑结构按照功率大小的分类如下:  10W以内常用RCC(自激振荡)拓扑方式  10W-100W以内常用式拓扑(75W以上电源有PF值要求)  100W-
    发表于 03-27 16:30

    如何降低开关电源空载损耗

    的实际方法被提出来。本文主要以开关电源转换器为例讨论如何降低开关电源的空载损耗。 最后是各集成控制器厂商针对降低空载
    发表于 03-17 15:25

    电源经典文档-精通开关电源设计

    本文档基于作者多年从事开关电源设计的经验,从分析开关变换器最基本器件:电感的原理入手,由浅入深系统地论述了宽输入电压DC-DC变换器(含离线式正、
    发表于 03-17 14:15

    基于LTSpice的GaN开关损耗的仿真

    基于LTSpice的GaN开关损耗的仿真
    的头像 发表于 03-13 15:44 2083次阅读
    基于LTSpice的GaN<b class='flag-5'>开关损耗</b>的仿真

    MOSFET开关损耗和主导参数

    本文详细分析计算开关损耗,并论述实际状态下功率MOSFET的开通过程和自然零电压关断的过程,从而使电子工程师知道哪个参数起主导作用并更加深入理解MOSFET。 MOSFET开关损耗 1
    发表于 02-26 14:41

    CCM开关电源变压器计算设计

    CCM开关电源变压器计算设计(输入:90-264VAC,输出:12V/2A,EE1710,Bmax=0.3T,65kHz)1.设计目标参数值输入电压范围90-264VAC(整流后
    的头像 发表于 02-18 08:01 5169次阅读
    <b class='flag-5'>CCM</b><b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>开关电源</b>变压器计算设计

    工程师指南:38步骤 开关电源设计提供全面指导

    围绕开关电源设计展开,详细介绍了 38 个设计步骤,涵盖电路参数计算、元件选型及环路补偿设计等方面,为
    的头像 发表于 01-16 18:09 4490次阅读
    工程师指南:38步骤 <b class='flag-5'>反</b><b class='flag-5'>激</b>式<b class='flag-5'>开关电源</b>设计提供全面指导