0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究人员开发“液态”神经网络 可适应快速变化的训练环境

工程师邓生 来源:cnBeta.COM 作者:cnBeta.COM 2021-01-29 10:46 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

想要适应自动驾驶、控制机器人、医疗诊断等场景,就必须让神经网络适应快速变化的各种状况。好消息是,麻省理工(MIT)计算机科学与人工智能实验室(CSAIL)的 Ramin Hasani 团队,已经设计出了一种具有重大改进的“液态”神经网络。其特点是能够在投入训练阶段之后,极大地扩展 AI 技术的灵活性。

通常情况下,研究人员会在训练阶段向神经网络算法提供大量相关的目标数据,来磨炼其推理能力。

期间通过对正确的响应加以奖励,以优化其性能。然而传统的训练方案,明显还是过于“刻板”了。

有鉴于此,Ramin Hasani 与团队成员合作开发了一套新方法,让神经网络可以像“液体”一样,随着时间的流逝而更好地适应“正确”的新信息。

举个例子,如果无人驾驶汽车上的感知神经网络能够分辨晴朗的天空和大雪等环境,就可以更好地顺应情况的变化、并维持较高的性能。

这项新研究的主要特点,是侧重于时间序列的适应性。比之建立于训练数据的多快照或时间上的静态时刻,可流动的液态神经网络可以将时间序列或图像序列也考虑进来,而不是孤立的各个片段。

得益于这种系统设计方法,与传统神经网络相比,MIT 的液态系统实际上更便于开展观察研究。

前一种 AI 通常被称作‘黑盒’,尽管算法开发者明确知晓输入信息的判定准则,但通常无法确定其中到底发生了什么。

而液态神经网络在这部分提升了透明度、对复杂计算节点的依赖性也更少,因此还具有相当不错的成本优势。

最终结果表明,在预测已知数据集的未来值方面,液态神经网络的准确性要显著优于其它替代方案。

下一步,Hasani 将与团队成员继续改进液态神经网络的性能表现,并努力将之推向实际应用。

责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106791
  • 数据
    +关注

    关注

    8

    文章

    7314

    浏览量

    93968
  • 自动驾驶
    +关注

    关注

    791

    文章

    14668

    浏览量

    176471
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的
    的头像 发表于 09-28 10:03 695次阅读
    <b class='flag-5'>液态</b><b class='flag-5'>神经网络</b>(LNN):时间连续性与动态<b class='flag-5'>适应</b>性的<b class='flag-5'>神经网络</b>

    神经网络的并行计算与加速技术

    问题。因此,并行计算与加速技术在神经网络研究和应用中变得至关重要,它们能够显著提升神经网络的性能和效率,满足实际应用中对快速响应和大规模数据处理的需求。
    的头像 发表于 09-17 13:31 884次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络结构与参数,借助
    发表于 06-25 13:06

    神经网络RAS在异步电机转速估计中的仿真研究

    众多方法中,由于其结构简单,稳定性好广泛受到人们的重视,且已被用于产品开发。但是MRAS仍存在在低速区速度估计精度下降和对电动机参数变化非常敏感的问题。本文利用神经网络的特点,使估计更为简单、
    发表于 06-16 21:54

    基于FPGA搭建神经网络的步骤解析

    本文的目的是在一个神经网络已经通过python或者MATLAB训练好的神经网络模型,将训练好的模型的权重和偏置文件以TXT文件格式导出,然后通过python程序将txt文件转化为coe
    的头像 发表于 06-03 15:51 894次阅读
    基于FPGA搭建<b class='flag-5'>神经网络</b>的步骤解析

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1305次阅读

    如何优化BP神经网络的学习率

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了模型参数在每次迭代时更新的幅度。过大的学习率可能导致模型在
    的头像 发表于 02-12 15:51 1422次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过
    的头像 发表于 02-12 15:36 1573次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算
    的头像 发表于 02-12 15:18 1274次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 1339次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络
    的头像 发表于 02-12 15:10 1463次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够在某些应用中提供最先进性能的机器学习模型。近年来,由于
    的头像 发表于 01-09 10:24 2243次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    基于光学衍射神经网络的轨道角动量复用全息技术的设计与实验研究

    随着神经网络的发展,光学神经网络(ONN)的研究受到广泛关注。研究人员从衍射光学、散射光、光干涉以及光学傅里叶变换等基础理论出发,利用各种光学设备及材料成功实现了
    的头像 发表于 12-07 17:39 3419次阅读
    基于光学衍射<b class='flag-5'>神经网络</b>的轨道角动量复用全息技术的设计与实验<b class='flag-5'>研究</b>