0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络是随着什么的变化

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积神经网络是随着什么的变化

卷积神经网络(Convolutional Neural Network),简称CNN,是一种特殊的神经网络,它的设计灵感来自于生物视觉的原理。它的主要特点是可以处理各种类型的数据,例如图像、视频、语音、文本等,因此被广泛应用于计算机视觉和自然语言处理领域。

CNN的发展可以追溯到20世纪80年代,当时,人们开始意识到神经网络的潜力,并开始研究它的应用,然而,由于当时的硬件条件不好,科技水平有限,神经网络的应用发展十分缓慢,直到近二十年,随着计算机硬件和科技水平的不断提升,神经网络才开始迎来了一次全面的发展。2012年,Hinton等人的一篇论文介绍了一种名为AlexNet的深度卷积神经网络,它成功地应用于ImageNet图像分类任务,大大提高了神经网络在计算机视觉中的应用效果,为CNN的繁荣开创了新的篇章。

随着CNN的发展,它在以下几个方面发生了重大的变化:

1. 网络深度的不断加深

在早期的神经网络中,往往只有几层神经元,网络结构相对简单,对于复杂数据的处理能力十分有限。然而,随着网络深度的不断加深,神经网络的处理能力也逐渐提升,网络结构也变得越来越复杂。尤其是在深度学习的领域中,网络深度已经达到了数百层,通过增加网络深度,神经网络可以自动提取更多、更高级别的特征,从而提高神经网络的识别准确率。

2. 卷积核和池化层的应用

CNN的核心部分是卷积层和池化层。卷积层可以自动提取不同的特征,而池化层则可以降低数据维度和计算量,提高网络的鲁棒性。卷积核和池化层的应用是CNN的重大变化之一。卷积核可以通过对输入数据进行卷积计算,提取出数据的特征,而池化层可以对特征图进行降维,在保证特征信息不丢失的同时,减少输出数据的维度,提高计算效率。

3. 激活函数的不断优化

神经网络中的激活函数是非常重要的一个组件。它的作用是将输入数据映射到一个非线性空间中,从而实现更加灵活的分类决策。早期的神经网络中,激活函数主要采用sigmoid、tanh等函数,但是这些函数存在梯度消失问题,导致神经网络训练困难。近年来,一些新的激活函数被引入,例如ReLU、LeakyReLU等,有效地缓解了梯度消失问题,提高了神经网络的性能。

4. 数据增强和迁移学习的应用

CNN在实际应用中,需要处理各种形式的数据,因此数据增强和迁移学习也成为了CNN的重要变化之一。数据增强的作用是通过对原始数据进行一系列变换,增加数据集的多样性,使得神经网络在训练过程中更容易学习到更多的特征。迁移学习则是将已有的模型迁移到新问题上,从而提高神经网络的学习效率和分类效果。

总的来说,随着计算机技术和深度学习的不断发展,卷积神经网络在设计和应用方面都发生了巨大的变化,其应用场景也变得越来越广泛。CNN的成功,不仅促进了计算机视觉和自然语言处理等领域的发展,还推动了大数据和人工智能技术的全面发展。未来,CNN还将继续发扬光大,为人类带来更多的惊喜和发展机遇。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像处理中尤其常见,因为图像本身就可以看作是由像
    的头像 发表于 11-19 18:15 1843次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x&gt;0 时,梯度恒为1,无梯度耗散问题,收敛快;当x&lt;0 时,该层的输出为0。 CNN
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能
    发表于 10-29 06:08

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第一层卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 708次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 892次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 1324次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1597次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1358次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1529次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2264次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法