0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

从22个方向分享PCB布板与EMC的关系

iIeQ_mwrfnet 来源:微波射频网 作者:微波射频网 2021-02-12 14:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

说起开关电源的难点问题,PCB布板问题不算很大难点,但若是要布出一个精良PCB板一定是开关电源的难点之一(PCB设计不好,可能会导致无论怎么调试参数都调试布出来的情况,这么说并非危言耸听)原因是PCB布板时考虑的因素还是很多的,如:电气性能,工艺路线,安规要求,EMC影响等等;考虑的因素之中电气是最基本的,但是EMC又是最难摸透的,很多项目的进展瓶颈就在于EMC问题;下面从二十二个方向给大家分享下PCB布板与EMC。

分享点:熟透电路方可从容进行PCB设计之EMI电路

有的产品EMC很难在源头上去处理的,可以采用磁环滤波,当然我这里说的磁环有二个层面的意思,一方面是输入输出端的滤波电感,采用不同材质磁环,不同匝数会有对应的效果,还有一方面意思是直接在输入输出线上套磁环,有时能起到妙用,但不是在所有场合都能用,起码还是能作为判断依据;

上图蓝色和黑色线是输出正负端,上面套了个磁环,解决了输出整流管引起的高频端超出;有些时候端口的干扰在PCB板上加滤波器未必有效果,在输出线上放磁环就有想不到的效果。分享点十五:PCB走线之关键信号

注意:

1.CS信号(采样信号):从采样电阻R25,R26拉出,注意IC的地线以采样电阻为基准,采样电阻的正负差分走线拉倒IC CS脚以及IC 的GND脚。

2.驱动信号从驱动电路拉倒IC驱动引脚,注意不要干扰到CS脚;如图走线三根线并排走,并且将地线走在驱动先和CS线中间起到一定屏蔽作用;

3.双面板最好将IC一层铺地屏蔽,铺地的网络一定要从IC GND引出,非关键信号GND可直接打过孔,关键信号地需要单点接地,直接接IC;

4.FB反馈网络信号注意查分走线并且单点接IC;

5.RCD吸收网络不要放在主回路;

6.VCC的整流滤波地需要接主功率地,二级滤波可接IC 地;

7.Y电容走线单独接,不可与主功率混淆,避免干扰;

分享点:主功率及控制部分地接线示意图

90ae6e78-59c5-11eb-8b86-12bb97331649.jpg

可能很多人看到此图,云里雾里的,大致介绍下:

1.PFC的驱动和IC共地接PFC管,更具体点是接采样电阻的地;

2.DC-DC部分的驱动地和控制地接DC开关管部分的采样地;

3.辅助源部分控制地接辅助源MOS管采样第,MOS管地再接主功率地;

4.各自IC的供电地通过辅助源EC滤波接IC地,注意RC滤波靠近IC;

总结:注意好各自的单点接地,地线不乱,是走线最重要的地方之一!!!分享点十七:电磁场屏蔽机理分析

90c822aa-59c5-11eb-8b86-12bb97331649.png

如图对照:输入和输出的电场干扰可以通过电容传输耦合,若增加屏蔽板,则增加了C4的大小,并且C1也会减小,对电场干扰起到衰减的目的;图二:磁场屏蔽原理

90ec5396-59c5-11eb-8b86-12bb97331649.png

如图:磁场屏蔽的特点和磁场不一样,需要外壳屏蔽,电场只需要平面屏蔽板,故散热器屏蔽带来的是电场屏蔽,有的采用外壳封闭式电源则起到了一定磁场屏蔽;

磁场屏蔽原理,磁场通过屏蔽罩会改变磁路,导致磁力线向周围扩散,中间磁场干扰达到屏蔽目的;分享点十八:开关器件与EMC

开关器件哪些参数对EMC有重要影响,我们常说快管,慢管是以什么作为参照的呢?我们都知道快管开通损耗小,为了做高效率都喜欢用,但是为了EMC顺利通过,不得不舍弃效率,降低开关速度来减弱开关辐射;

对于MOS管,开通速度是由驱动电阻与输入结电容决定的;关断速度是由输出结电容与管子内阻决定;

910d4a56-59c5-11eb-8b86-12bb97331649.jpg

9140e65e-59c5-11eb-8b86-12bb97331649.jpg

参照以上两图,是不同型号的MOS管,对比下输入结电容和输出结电容,2400PF与6800PF;780PF与2200PF;一看就知道第一个规格是快管,第二个是慢管,这时候决定开关速度还要与驱动电阻匹配;常规情况驱动电阻在10R-150R比较多,选取驱动电阻与结电容有关,针对快板驱动电阻可适当增大,慢管驱动电阻可适当减小;

对于二极管,有肖特基二极管,快回复二极管,普通二极管,还有一种用的比较少的SIC二极管,开关速度SIC二极管几乎为零,等于是没有反向恢复,开关辐射最小,并且损耗也最小,唯一的缺点就是价格昂贵,故很少用;其次就是肖特基二极管,正向压降低,反向恢复时间短,依次是快回复和普通二极管;需要在损耗和EMC之间折中;一般可采取改吸收以及套磁珠等措施整改EMC;分享点十九:EMC之滤波器

915f6f8e-59c5-11eb-8b86-12bb97331649.png

滤波器的架构选择对滤波器的影响很重要,在不同场合,滤波器是根据阻抗匹配来达到滤波效果,大家可根据此图的原则参考选取如何滤波;比如最常用的输出整流桥后采用π型滤波以及输出端采用LC滤波器;

918a4e5c-59c5-11eb-8b86-12bb97331649.png

滤波器的材质对设计滤波电感也是至关重要,采用不同初始磁导率的材质会在不同频率段起作用,选错材质就完全失去应有的效果;分享点二十:EMC之反激高频等效模型分析

91bf36c6-59c5-11eb-8b86-12bb97331649.jpg

先从最简单的模型理解EMC:

EMC的路径,当然空间辐射是跟环路有关,环路也是路径构造成的;分析出反激高频等效模型,帮助理解EMC形成的机理;我们的测试接收设备会从L,N端接收传导,为了减小接收的干扰,就必须让干扰通过地回路流通而不从L,N端口流向接收设备;这时候我们的EMI电感以及Y电容通过阻抗匹配就可以实现;另外原边的干扰可以通过原副边Y电容,变压器杂散电容以及大地耦合到副边,形成更多的回路;当然一些结电容参数,如MOS管结电容,散热器结电容也能构成流通路径;

分享点二十一:辐射的形式以及频率分布

9205e0a8-59c5-11eb-8b86-12bb97331649.jpg

这个图可能有些抽象,不过正好EMC是很难做到具体,需要给到我们一些启示,可知:差模辐射是以环路的形式存在,而共模辐射是以天线的形式发射;因此正好印证前面说我们布板的时候开关环路的布局以及走线的时候不要走锐角,常规走45度,最好是圆弧走线,当然走线效率会比较低;

这些原理基础知识理解得好,对实际处理EMC工作以及布板很有用那个,如果没这种意识,可能毫无用处,因为提供不了直接方法,需要与其他知识想结合;

而且这里提的很多原理东西,在很多EMC资料中是看不到的,而且也没这么集中,需要反复体会!

92276f66-59c5-11eb-8b86-12bb97331649.jpg

如图:一些频率端与开关电源产生部位的关系,这只是一般规律,不要完全相信;既是规律又不能尽信是为什么?规律并不是在所有情况下成立,不同电源的差异也很大,所以原理是帮你分析,而不是按照方法去硬套;分享点二十二:EMC实例

924bb02e-59c5-11eb-8b86-12bb97331649.jpg

927b23fe-59c5-11eb-8b86-12bb97331649.png

根据传导实例,频率的分布点关键是具体的数据与基频之间的关系,这个测试完后,需要揣测这些数值的规律,可能能发现什么蛛丝马迹;当然对于这些频率如何通过滤波器去解决的手段前面也说过了;

这里是给大家补充一些似乎很神秘的EMC它是怎么来的,感觉不再神秘,而不只是稀里糊涂的采用滤波器解决了问题!

原文标题:从22个方向全方位讲电源PCB布板与EMC的关系

文章出处:【微信公众号:微波射频网】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    185

    文章

    18709

    浏览量

    261395
  • pcb
    pcb
    +关注

    关注

    4391

    文章

    23743

    浏览量

    420768
  • emc
    emc
    +关注

    关注

    174

    文章

    4323

    浏览量

    190352

原文标题:从22个方向全方位讲电源PCB布板与EMC的关系

文章出处:【微信号:mwrfnet,微信公众号:微波射频网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何判断PCB的厚度?

    PCB的厚度与层数之间存在一定的关联性,但并非绝对的一一对应关系。通常,层数越多,PCB的总厚度也会相应增加。 常见厚度与层数的对应
    的头像 发表于 11-12 09:44 208次阅读

    改善EMCPCB设计原理

    电磁兼容EMC是电子设备稳定运行的核心要求,它包含电磁辐射和电磁敏感性两双向问题。而PCB作为元件的物理载体,其设计直接决定了EMC性能的下限,如果是不合理的层布局、元件位置或接地方
    的头像 发表于 10-22 15:45 422次阅读

    Altair PollEx:PCB规则检查及系统EMC仿真技术

    Altair PollEx:PCB规则检查及系统EMC仿真技术
    的头像 发表于 09-17 11:19 4778次阅读
    Altair PollEx:<b class='flag-5'>PCB</b>规则检查及系统<b class='flag-5'>EMC</b>仿真技术

    如何为EMC设计选择PCB叠层结构

    在设计电磁兼容性(EMC)表现优异的 PCB 时,叠层结构的选择是需要掌握的核心概念之一。
    的头像 发表于 07-15 10:25 6201次阅读
    如何为<b class='flag-5'>EMC</b>设计选择<b class='flag-5'>PCB</b>叠层结构

    苏州 8月22-23日《EMC设计》公开课火热报名中!

    课程名称:《EMC设计》讲师:吴老师时间地点:苏州8月22-23日主办单位:赛盛技术课程背景随着电子信息的快速发展,产品EMC要求越来越高。经市场调研,70%的企业并没有专职的
    的头像 发表于 06-16 17:17 312次阅读
    苏州 8月<b class='flag-5'>22</b>-23日《<b class='flag-5'>板</b>级<b class='flag-5'>EMC</b>设计》公开课火热报名中!

    PCBEMC设计指南

    本文档的主要内容介绍的是工程开发中 PCBEMC设计指南
    发表于 06-08 09:50 34次下载

    EMC设计—PCB高级EMC设计

    目录 EMC理论基础 EMC测试实质 PCB的接地设计 PCB内部EMC设计 EMC去耦分析
    发表于 05-28 16:54

    PCBEMC设计(一):层的设置与排布原则

    PCB的电磁兼容性(EMC)设计首先要考虑层的设置,这是因为单板层数的组成、电源层和地层的分布位置以及平面的分割方式对EMC性能有着决定性的影响。为昕MarsPCBlayerstack层数的合理规划
    的头像 发表于 05-17 16:17 998次阅读
    <b class='flag-5'>PCB</b>的<b class='flag-5'>EMC</b>设计(一):层的设置与排布原则

    符合EMCPCB设计准则

    时源芯微专业EMC/EMI/EMS整改 EMC防护器件 就ESD问题而言,设计上需要注意的地方很多,尤其是关于GND布线的设计及线距,PCB设计中应该注意的要点: (1) PCB板边间
    的头像 发表于 05-15 16:42 599次阅读

    开关电源PCB技术

    涉及到开关电源的PCB设计规范和开关电源PCB技术。 还有电脑电源PCB设计、抄经验。
    发表于 05-07 17:08

    EMC单位换算】磁场单位的转换关系

    EMC单位换算】磁场单位的转换关系
    的头像 发表于 04-16 17:44 1104次阅读
    【<b class='flag-5'>EMC</b>单位换算】磁场单位的转换<b class='flag-5'>关系</b>

    EMC思想来设计DC/DC电源的PCB

    的损耗,电压的下降等维度之外,主要要考虑:干扰、抗干扰。 其实很多电源PCB的设计规范可以看出,都可以EMC的角度去解读其设计规则制定的用意。 电源的EMC设计,跟普通的
    发表于 04-15 13:40

    PCB】四层电路PCB设计

    布线 抗干扰 1 布局 所谓布局就是把电路图中所有元器件都合理地安排在面积有限的PCB上。信号的角度讲,主要有数字信号电路 、模拟信号电路以及混合信号电路
    发表于 03-12 13:31

    华为PCBEMC设计指南【可下载】

    转载一篇华为《PCBEMC设计指南》,合计94页PDF,对PCBEMC设计布局、布线、背板的EMC
    发表于 02-26 15:52

    华为PCBEMC设计指南

    转载一篇华为《PCBEMC设计指南》,合计94页PDF,对PCBEMC设计布局、布线、背板的EMC
    的头像 发表于 01-15 10:09 2119次阅读
    华为<b class='flag-5'>PCB</b>的<b class='flag-5'>EMC</b>设计指南