声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
神经网络
+关注
关注
42文章
4827浏览量
106796 -
IP
+关注
关注
5文章
1849浏览量
154911 -
IP核
+关注
关注
4文章
339浏览量
51715
原文标题:睿芯团队再获突破,全球首款商用图神经网络加速IP核正式发布
文章出处:【微信号:gh_d66fc4899f4f,微信公众号:SmarCo中科睿芯】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
热点推荐
CNN卷积神经网络设计原理及在MCU200T上仿真测试
数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x>0 时,梯度恒为1,无梯度耗散问题,收敛快;当x<0 时,该层的输出为0。
CNN
发表于 10-29 07:49
NMSIS神经网络库使用介绍
NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最大限度地减少其内存占用。
该库分为多个功能,每个功能涵盖特定类别
发表于 10-29 06:08
在Ubuntu20.04系统中训练神经网络模型的一些经验
本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
发表于 10-22 07:03
CICC2033神经网络部署相关操作
在完成神经网络量化后,需要将神经网络部署到硬件加速器上。首先需要将所有权重数据以及输入数据导入到存储器内。
在仿真环境下,可将其存于一个文件,并在 Verilog 代码中通过 readmemh 函数
发表于 10-20 08:00
液态神经网络(LNN):时间连续性与动态适应性的神经网络
1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
睿海光电800G光模块助力全球AI基建升级
在全球数字化转型加速的背景下,超高速光模块作为数据中心与AI算力网络的核心部件,正经历从400G向800G、1.6T的迭代浪潮。在这一赛道中,深圳市睿海光电科技有限公司(以下简称“
发表于 08-13 19:05
NVIDIA实现神经网络渲染技术的突破性增强功能
发者能使用 NVIDIA GeForce RTX GPU 中的 AI Tensor Cores,在游戏的图形渲染管线内加速神经网络渲染。
BP神经网络与卷积神经网络的比较
BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
BP神经网络的优缺点分析
BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
什么是BP神经网络的反向传播算法
BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
BP神经网络与深度学习的关系
BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
BP神经网络的基本原理
BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
王欣然教授团队提出基于二维材料的高效稀疏神经网络硬件方案
two-dimensional semiconductor ferroelectric field-effect transistors”为题发表最新研究进展,报道了基于二维材料的高效稀疏神经网络硬件解决方案
人工神经网络的原理和多种神经网络架构方法
在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络 人工神经网络模型之所

睿芯团队全球首款商用图神经网络加速IP核正式发布



评论