0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

石墨烯助力传统MEMS器件的性能得到大幅提升

电子设计 来源:电子设计 作者:电子设计 2020-12-26 00:36 次阅读

据麦姆斯咨询报道,石墨烯材料领先供应商Graphenea公司英飞凌(Infineon Technologies)、WITec、亚琛工业大学(RWTH Aachen University)和Simune Atomistics等工业和学术界伙伴合作,宣布成功完成了NanoGraM项目,该项目专注于基于石墨烯的NEMS / MEMS(纳米/微机电)器件研究。NanoGraM项目为未来的潜在应用重点关注的三类特定器件包括:石墨烯麦克风、石墨烯膜压力传感器和石墨烯膜霍尔传感器。

这些石墨烯器件的目标市场包括便携式电子产品智能手机、笔记本电脑)、汽车、工业以及智能家居等。

MEMS麦克风芯片全球主要供应商英飞凌,在其申请的一篇专利中介绍了这种应用石墨烯膜的MEMS麦克风/扬声器。

顶部包括石墨烯薄膜的MEMS麦克风设计

传统MSMS麦克风/微型扬声器通常以硅技术进行制造。硅微加工的麦克风包括在声场中移动的柔性薄膜以及被称作背板的静态穿孔电极的电容换能器。在压力过度的情况下,该薄膜会经受到高达10bar的压力差。在该情况下,通常的薄膜会由于其断裂强度过低而失效。

为了解决硅麦克风薄膜中的压力过度的问题,可在麦克风前部插入阻尼垫圈,然而这会引入额外的不期望出现的噪声,此外,还可能增加麦克风的前部体积。解决压力过度问题的另外的可能方式是经由弹簧支撑的薄膜或者通过提供排气通道来提供透气,不过,这需要特殊的设计以及结构的低应力梯度。

石墨烯的机械特性对于生产非常高柔度和大断裂强度的麦克风薄膜而言是有利的,由此允许设计相对任何大行程位移均具有鲁棒性的高灵敏度麦克风。另一方面,微型扬声器可以从高柔度所获得的益处在于,可以减少用于获得高行程的驱动电压,同时高的断裂强度降低了故 障风险并且实现了高耐久性。可以通过形成两个或更多单层石墨烯膜的叠层,而增大石墨烯薄膜的强度。

从下表石墨烯与硅进行比较时的机械属性的表格可以看出,在杨氏模量、断裂强度、泊松比(Poisson ratio)和密度方面,石墨烯胜过硅。因此,出于以上原因,在以MEMS技术实现麦克风/微型扬声器时使用石墨烯作为薄膜材料是有利的。

石墨烯麦克风展现出了超高的灵敏度,以及覆盖从音频到超声波频段的运行频谱,这可以带来很多新颖的功能。

对于压力传感器和霍尔传感器,应用石墨烯材料的预期优势包括更高的灵敏度(高达100倍)、坚固性(高达5倍)、增强的信噪比以及避免工艺中的有害材料等。

石墨烯NEMS/MEMS传感器结合硅技术将实现新的智能系统,增强人类的福祉、食品安全、交通安全、污染监控以及国土安全。这项研究作为NanoGraM项目的一部分,为工业NEMS/MEMS制造商和参与的中小企业带来了决定性的技术领先优势。

Graphenea作为石墨烯供应商,通过开发在NEMS/MEMS器件的空腔和开孔上悬浮CVD单层和多层石墨烯的半干(semi-dry)转移工艺来支持该项目的研究。Graphenea的工艺可使石墨烯层成功地悬浮在直径达500微米的开孔上。这一系列研究帮助Graphenea推出了一类新产品:在腔体上悬浮的单层石墨烯。

悬浮在腔体上的单层石墨烯

该项目提交了三份专利申请和至少七篇科学论文出版,还有更多研究成果正在整理发布中。除了制造之外,大面积石墨烯膜的表征也被提升到了新的高度。

该项目持续了3年,由德国(BMBF)和西班牙巴斯克自治区共同资助,项目总金额约为196万欧元。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2525

    文章

    48137

    浏览量

    740467
  • mems
    +关注

    关注

    128

    文章

    3738

    浏览量

    188792
  • 石墨烯
    +关注

    关注

    54

    文章

    1514

    浏览量

    78625
收藏 人收藏

    评论

    相关推荐

    石墨烯/硅基异质集成光电子器件综述

    石墨烯/硅基异质集成的光子器件研究在近年来取得了巨大进展,因石墨烯所具有的诸多独特的物理性质如超高载流子迁移率、超高非线性系数等,石墨烯/硅基异质集成
    的头像 发表于 04-25 09:11 292次阅读
    <b class='flag-5'>石墨</b>烯/硅基异质集成光电子<b class='flag-5'>器件</b>综述

    石墨电容

    探索未来能量储存新篇章:高性能4.2V 5500F 2.6Ah石墨电容推荐 随着科技的飞速发展,我们对于能量储存的需求也日益增长。在众多的储能元件中,石墨
    发表于 02-21 20:28

    石墨烯是什么材料有什么功能 石墨烯电池与铅酸电池哪个好

    迁移率,石墨烯可以用于制作高性能的电子器件,如晶体管、显示屏等。与传统的硅材料相比,石墨烯具有更高的电子迁移率和更低的电阻,能够实现更高的
    的头像 发表于 02-20 13:39 378次阅读

    MEMS差分振荡器与传统差分振荡器的比较

    MEMS差分振荡器与传统差分振荡器的比较  MEMS(微机电系统)差分振荡器是一种基于微纳米加工技术制造的振荡器,相比于传统的差分振荡器,具有独特的优势。
    的头像 发表于 01-26 14:20 169次阅读

    石墨烯改性橡胶复合材料的研究进展

    当前随着纳米材料的不断开发和应用,石墨烯也作为高性能纳米填充材料被加入到橡胶基体中,和炭黑、白炭黑等传统填充材料相比,石墨烯具有独特的结构和优异的
    发表于 01-22 15:02 133次阅读

    DOH新工艺技术助力提升功率器件性能及使用寿命

    DOH新工艺技术助力提升功率器件性能及使用寿命
    的头像 发表于 01-11 10:00 154次阅读
    DOH新工艺技术<b class='flag-5'>助力</b><b class='flag-5'>提升</b>功率<b class='flag-5'>器件</b><b class='flag-5'>性能</b>及使用寿命

    MEMS振荡器与传统振荡器的比较

    MEMS振荡器与传统振荡器的比较
    的头像 发表于 12-13 16:14 167次阅读
    <b class='flag-5'>MEMS</b>振荡器与<b class='flag-5'>传统</b>振荡器的比较

    MEMS器件国产化践行者——知芯传感宣布重磅搬迁,助力国产MEMS器件行业腾飞!

    最新消息!知芯传感,作为国产MEMS器件领域的践行者,于2023年8月18日发布了令人振奋的搬迁公告。这一重要举措意味着知芯传感迈向了新的征程,进一步巩固其在国内MEMS市场践行者的地位。
    的头像 发表于 08-25 17:20 458次阅读
    <b class='flag-5'>MEMS</b><b class='flag-5'>器件</b>国产化践行者——知芯传感宣布重磅搬迁,<b class='flag-5'>助力</b>国产<b class='flag-5'>MEMS</b><b class='flag-5'>器件</b>行业腾飞!

    石墨谐振式压力传感器(2)#传感器

    电源传感器电路石墨
    未来加油dz
    发布于 :2023年08月17日 09:52:38

    石墨谐振式压力传感器(1)#传感器

    电源传感器电路石墨
    未来加油dz
    发布于 :2023年08月17日 09:52:00

    石墨膜光纤FP压力传感器(3)#传感器

    电源传感器电路石墨
    未来加油dz
    发布于 :2023年08月17日 09:51:21

    石墨膜光纤FP压力传感器(2)#传感器

    电源传感器电路石墨
    未来加油dz
    发布于 :2023年08月17日 09:50:36

    石墨膜光纤FP压力传感器(1)#传感器

    电源传感器电路石墨
    未来加油dz
    发布于 :2023年08月17日 09:49:48

    石墨光纤F-P声压传感器(2)#传感器

    电源传感器电路石墨
    未来加油dz
    发布于 :2023年08月17日 09:49:05

    石墨提升复合材料性能

    作为一种单层二维碳同素异形体,石墨烯表现出优于碳纳米管的性能,包括更大的表面积、卓越的电子迁移率、更高的拉伸强度和杨氏模量。然而,最近在制造碳纤维时使用氧化石墨烯(GO)液晶的实验导致纤维的抗拉强度低于标准,因为它们的固有排列和
    的头像 发表于 06-26 15:12 512次阅读
    <b class='flag-5'>石墨</b>烯<b class='flag-5'>提升</b>复合材料<b class='flag-5'>性能</b>