0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

第一性原理计算在锂离子电池领域的应用

电子设计 来源:电子设计 作者:电子设计 2020-12-25 21:47 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着全球经济及社会的发展,人们对于能源的需求及使用日益增长。环境污染和化石能源匮乏的问题日益显著,为了人类的可持续发展。寻求开发新能源和可再生资源迫在眉睫。太阳能和风能等新型能源虽然便利清洁,但是由于其自身受时空分布不均匀的特点限制在现阶段并不能广泛使用。

作为化学储能装置,锂离子电池以比功率高、能量密度大、寿命长、自放电率低和贮藏时间长等优点,被广泛应用于便携式电子设备、航天、军事装备及电动交通工具。目前,锂离子电池已逐步替代其他电池为主要的动力电池。另一方面,由于近年来智能电网及大规模储能领域的发展对锂离子电池的能量密度和功率密度提出了更高的要求,这使得开发具有高能量密度和大功率密度的新型锂离子电池尤为重要。

第一性原理计算方法即从头算(ab initio)被广泛应用在化学、物理、生命科学和材料学等领域。它的基本思想是将多个原子构成的体系看成是由多个电子和原子核组成的系统,并根据量子力学的基本原理对问题进行最大限度的“非经验性”处理。它只需要5个基本常数(m0,e,h,c,kB)就可以计算出体系的能量和电子结构等物理性质。

第一性原理计算可以确定已知材料的结构和基础性质,并实现原子级别的精准控制,是现阶段解决实验理论问题和预测新材料结构性能的有力工具。并且,第一性原理计算不需要开展真实的实验,极大地节省了实验成本,现已被广泛应用于锂离子电池电极材料的嵌脱锂机理探索、扩散能垒计算、结构稳定性、嵌锂容量机理研究等方面,为锂离子电池电极材料的制备和改性提供了有效的理论指导。

其中,在锂电领域,利用第一性原理计算为锂离子电池材料的设计提供的理论应用主要集中于以下几个方面:

1 工作电压的计算

锂离子嵌入电压是锂离子电池的一个重要参数,而理想的材料是正极材料的电压平台足够高、负极材料的电压平台足够低,才能得到较高的工作电压,进而为锂离子电池提供较高的能量密度。第一性原理可以通过计算材料基态的电子总能量计算出平均嵌锂电压(average intercalationvoltage,AIV),与实验测到的电压数值比较接近,其原理阐述如下,例如电极反应式:

其开路电压可由如下公式计算所得:

其中,μcathode和μanode分别为锂原子在正负极材料中的化学势,z为反应过程中转移电子数,F是法拉第常数,△G为吉布斯(Gibbs)自由能。

在0K时,可近似为△G≈△E,则公式1可写为:

因此,只要计算反应前后的各物质的总能量,就可以利用公式(2)求解正极材料的平均电压。第一性原理计算可以比较准确地预测材料的平均嵌锂电压,与实验测到的电压数值比较接近,如Zhou等2人通过计算得正极材料LiNiPO4的电压为5.1V,而实验测试值为5.1V-5.3V。Chen等3通过计算所得正极材料LiFePO4的平均电压为3.2V,其实验值为约3.4V。另外, Hassan等4利用第一性原理计算所得到的RuO2负极材料工作电压曲线,与实验中所获得工作电压曲线变化趋势定性的符合。

2 电子传导性和离子扩散性

倍率性能是指电池在一定时间内放出其额定电容电流值。倍率性能越高的电池,放出相同容量的时间则越短,这有利于电池快速的充放电。材料的离子电导率和电子电导率共同影响着材料的倍率性能。高倍率下的充放过程不仅需要快速的离子扩散,也需要快速的电子传导。

利用第一性原理计算的方法,可以采用NEB(Nudged elastic band)和CI-NEB(A Climbing image nudged elastic band)的方法,对材料中锂离子的扩散能垒进行计算,而扩散能垒则对应着锂离子的扩散能,也就是扩散速率。扩散能垒越低的材料,其扩散速率越大,则相应的倍率性能则越高。像大家在文献中所看到的诸如此类的扩散能垒图5,都是通过第一性原理计算的方法进行计算的。N掺杂石墨烯能够改善负极材料的锂离子扩散速率,除了在实验中测得的实验值来验证外,也可以通过第一性原理计算来计算不加N掺杂石墨烯时材料中锂离子的扩散能垒,通过和加N掺杂石墨烯后的复合材料的锂离子扩散能垒进行对比来分析复合材料中扩散能垒的降低是否真的是引入N掺杂石墨烯引起的。

3 材料结构稳定性的计算

安全性能一直是锂离子电池的一个重要指标,这影响了电极材料和电解液的选择,我国曾出现过车载锂离子电池起火的事故,正是因为电池在使用过程中造成短路导致的。所以,必须选择结构和热稳定性均良好的材料作为锂离子电池的电极材料。在锂离子电池正极材料充放电循环中,在深度脱锂时,正极材料可能会释放O2,这不仅会消耗电解液,更会导致爆炸,造成重大安全问题。

利用第一性原理计算,可以通过计算材料缺陷的形成能和迁移能,来预测相稳定性。例如Hakim Iddir等6基于第一性原理计算,通过计算Co空位的形成能和迁移能,预测了xLi2MnO3?(1?x)LiMO2的相稳定性。Gao等7基于DFT和FPMD分析了Ti,V,Cr,Fe,Co,Ni,Zr和Nb等元素掺杂Li2MnO3材料中的Mn对于材料性能的影响,通过定义O的反应焓,计算吉布斯自由能,来研究掺杂后材料中O2生成的难易程度。Ti-,V-,Cr-,Co-,Ni-和Zr-doped在含Li量y=1.5之前达到零点,因此,其掺杂不能推迟O2的释放。而Fe-和Nb-doped在Li移除量超过0.5时仍未达到零点,表明其掺杂可以抑制材料在反应中的O2的生成,从而使得材料的安全性能得到提升,其理论计算的结果与实验掺杂得到的结果一致。

4 储锂容量的计算

电极材料的容量是电极中非常重要的性能,在第一性原理计算中,可以通过电极材料对锂原子的吸附能来进行容量的分析。吸附能的大小可以比较不同材料对锂原子的吸附能力,吸附能越大的材料,其吸附锂原子的能力则越强。但是,吸附能大的材料,其容量并不一定高。因为吸附能越大,如果其继续吸附锂原子后,吸附能降低的速率很大的话,那么这种材料的储锂容量便不会高。如果吸附能越大,当逐渐增加锂原子后吸附能的降低速率也很平缓时,这种材料就有可能拥有较大的储锂容量。锂原子有内聚能,也就是锂原子自身形成锂块体时所对应的能量。当锂原子在材料中的吸附能低于内聚能时,这时锂原子倾向于形成锂块体,而不再为电池的容量做贡献,也就是说,当我们利用第一性原理计算得到材料的吸附能低于锂块体的内聚能时,此时所对应的的储锂容量则为该材料的理论储锂容量。

例如Wang等8利用第一性原理计算得到了(掺杂)石墨烯与金属氧化物负极材料的反应产物Li2O构成的界面储锂容量,为金属氧化物在实验中所观察到的额外容量的产生提供了机理的解释。

但是,第一性原理计算在现阶段锂离子电池领域中的应用也有局限性,因为实际电极材料的工作状态是在多种反应共存的条件下进行的,而通过第一性原理计算模拟的材料性能是在理想的平衡态条件进行的,这可能造成计算值与实验值产生一定的偏差。但是,通过第一性原理计算得到的数值可以定性的帮助实验工作者进行辅助分析,解释实验中存在的一些机理问题,为锂离子电池电极材料的设计提供一定的帮助。

最后,给大家进行一个简单的词汇科普—VASP。大家看到的在锂电领域第一性原理计算的文献中经常所看到的VASP一词,其实是Vienna Ab-intio Simulation Package的缩写,它是基于密度泛函理论并利用平面波赝势方法进行从头分子动力学和第一性原理计算电子结构计算的软件包,是目前材料模拟和计算材料科学研究中非常流行的商用软件。Vasp软件是由J. Furthmuller和G. Kresse首先开发和利用的,并在后期得到了不断的更新和完善,如今使用的Vasp软件包已相当成熟。

Vasp软件包具有以下优点:

(1)它给出了周期表中几乎全部元素的赝势,这些赝势已经经过充分的测试,形成了一个可用性非常高的赝势库。

(2)优化算法的实现(RMM-DISS,blocked Davidson和共轭梯度算法)效率高、稳定性好。

(3)虽然没有图形界面,但是使用文档详细,入门快。

(4)所支持的计算机平台(单机,计算集群,超级标量计算机和超级向量计算机)非常广泛,几乎在所有架构(Intel的Pentium系列、Athlon系列的CPU、DEC的Alpha机等等)的计算机器的运行效率都非常高。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    262

    文章

    8592

    浏览量

    182801
  • 锂离子
    +关注

    关注

    5

    文章

    571

    浏览量

    39522
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    锂离子电池是如何工作的?了解它的内部结构和制造过程

    锂离子电池已经成为现代生活中不可或缺的能源部件,无论是手机、笔记本电脑,还是电动汽车,都依赖它来提供电力。这种电池通过锂离子在正极和负极之间的移动来储存和释放能量,由于工作原理可靠且安全
    的头像 发表于 09-23 18:03 2302次阅读
    <b class='flag-5'>锂离子电池</b>是如何工作的?了解它的内部结构和制造过程

    文看懂锂离子电池的基础知识

    在新能源产业快速发展与全球能源转型的大背景下,锂离子电池已成为支撑新能源汽车、电化学储能及消费电子等领域发展的核心能量存储器件。锂电池技术体系涵盖核心结构、性能差异机制与精密制造流程,是行业研究
    的头像 发表于 09-04 18:02 755次阅读
    <b class='flag-5'>一</b>文看懂<b class='flag-5'>锂离子电池</b>的基础知识

    文读懂:锂离子电池的基本结构与应用

    锂离子电池作为新代电化学储能技术的核心载体,凭借高能量密度、长循环寿命及环境友好性等特征,已成为支撑消费电子、新能源汽车及可再生能源储能等领域发展的关键器件。深入理解其结构与应用场景对把握能源技术
    的头像 发表于 08-21 18:04 1438次阅读
    <b class='flag-5'>一</b>文读懂:<b class='flag-5'>锂离子电池</b>的基本结构与应用

    锂离子电池的原理与材料全解析

    锂离子电池作为现代储能领域的核心技术,其高效稳定的能量转换能力支撑着新能源产业的快速发展。美能锂电作为行业创新企业,长期致力于锂离子电池材料研发与工艺优化,其技术突破为动力电池
    的头像 发表于 08-14 18:02 2340次阅读
    <b class='flag-5'>锂离子电池</b>的原理与材料全解析

    锂离子电池组装:绕线与极耳焊接工艺揭秘

    锂离子电池作为核心储能部件,其制造工艺的每次精进都推动着电动汽车、储能系统等领域的技术革新。锂离子电池组装过程中的绕线和极耳焊接工艺不仅直接影响
    的头像 发表于 08-11 14:53 2805次阅读
    <b class='flag-5'>锂离子电池</b>组装:绕线与极耳焊接工艺揭秘

    锂离子电池隔膜质量检测与缺陷分析

    全球对可再生能源需求增长,锂离子电池作为关键能源存储技术,其性能和安全至关重要。隔膜是锂离子电池的核心,其质量影响电池性能。在电池的生产、
    的头像 发表于 08-05 17:55 818次阅读
    <b class='flag-5'>锂离子电池</b>隔膜质量检测与缺陷分析

    锂离子电池涂布工艺:技术要求与方法选择

    锂离子电池制造领域,涂布工艺是决定电池性能和质量的关键步骤之。涂布工艺的精确度直接影响到电池的容量、循环寿命以及安全
    的头像 发表于 08-05 17:55 748次阅读
    <b class='flag-5'>锂离子电池</b>涂布工艺:技术要求与方法选择

    干法电极技术:引领锂离子电池绿色革命

    全球能源转型中,锂离子电池作为清洁储能的主力,其生产过程的环保变得尤为重要。干法电极加工技术,作为种新兴的无溶剂电极制造方法,正在成为锂离子电池行业的绿色转型的关键。美能光子湾,作
    的头像 发表于 08-05 17:54 1144次阅读
    干法电极技术:引领<b class='flag-5'>锂离子电池</b>绿色革命

    锂离子电池创:性能、分类与GPE的应用前景

    随着全球对可持续能源解决方案的需求不断增长,锂离子电池技术已成为推动这变革的关键力量。这些电池以其卓越的能量密度、快速充电能力和环境可持续而闻名,广泛应用于从便携式电子设备到电动汽
    的头像 发表于 08-05 17:54 961次阅读
    <b class='flag-5'>锂离子电池</b>创:性能、分类与GPE的应用前景

    锂离子电池焊接工艺的分析解构

    作为现代社会的“能源心脏”锂离子电池的应用涉及相当广泛。锂离子电池的的制作工艺之中,焊接技术是连接其内部组件、确保电池高效运作的的重要环节,直接决定了电池安全
    的头像 发表于 08-05 17:49 1649次阅读
    <b class='flag-5'>锂离子电池</b>焊接工艺的分析解构

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定
    的头像 发表于 08-05 17:49 1857次阅读
    <b class='flag-5'>锂离子电池</b>电解液浸润机制解析:从孔隙截留到工艺优化

    单体动力锂离子电池:安全隐患剖析与防控策略

    在新能源产业高速发展的浪潮中,单体动力锂离子电池凭借高能量密度等优势,广泛应用于电动汽车、储能电站等领域。但近年来,电池热失控引发的燃烧、爆炸事故频发,成为行业发展的阻碍。光子湾科技可通过高端光学
    的头像 发表于 08-05 17:48 941次阅读
    单体动力<b class='flag-5'>锂离子电池</b>:安全隐患剖析与防控策略

    车用锂离子电池机理建模与并联模组不一致性研究

    车用锂离子电池机理建模与并联模组不一致性研究
    发表于 05-16 21:02

    FIB-SEM技术在锂离子电池的应用

    锂离子电池材料的构成锂离子电池作为现代能源存储领域的重要组成部分,其性能的提升依赖于对电池材料的深入研究。锂离子电池通常由正极、负极、电解质
    的头像 发表于 02-08 12:15 1046次阅读
    FIB-SEM技术在<b class='flag-5'>锂离子电池</b>的应用

    锂离子电池和三元锂电池,谁更安全?

    ,相信无论是锂离子电池还是三元锂电池,它们的安全都会得到进步提升,为我们的生活和社会发展提供更加可靠的能源支持。
    的头像 发表于 01-23 15:19 1351次阅读
    <b class='flag-5'>锂离子电池</b>和三元锂<b class='flag-5'>电池</b>,谁更安全?