0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

相控阵天线方向图:栅瓣和波束斜视

电子设计 来源:电子设计 作者:电子设计 2020-12-24 18:48 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

简介

关于相控阵天线方向图,我们将分三部分介绍,这是第二篇文章。 在第一部分中,我们介绍了相控阵转向概念,并查看了影响阵列增益的因素。在第二部分,我们将讨论栅瓣和波束斜视。栅瓣很难可视化,所以我们利用它们与数字转换器信号混叠的相似性,将栅瓣想象为空间混叠。接下来,我们探讨波束斜视的问题。波束斜视是我们使用相移,而不是使用真实时间延迟来使波束转向时,天线在频段范围内无聚焦的现象。我们还将讨论这两种转向方法之间的权衡取舍,并了解波束斜视对典型系统的影响。

栅瓣简介

到目前为止,我们只见过元件间隔为d = λ/2这种情况。图1开始说明为什么λ/2的元件间隔在相控阵中如此常见。图中共显示两种情况。首先,是蓝色线条,重复显示第1部分图11中的30°图。接下来,d/λ间隔增加到0.7,以显示天线方向如何变化。注意,随着间隔增加,波束宽度减小,这是一个积极现象。零值间隔减小使它们的距离更接近,这也可以接受。但是现在出现了第二个角度,在本例中为–70°,在该角度下出现了全阵列增益。这是最为不利的情况。这种天线增益复制被定义为一个栅瓣,可以被认为是空间混叠。

图4.θ = 50°、N = 32、d = 17 mm且Φ = 10 GHz时,栅瓣开始在水平方向出现。

通过限制最大扫描角度,可以自由地扩展元件间隔,增加每个通道的物理尺寸,以及扩展给定数量的元件的孔径。例如,可以利用这个现象,为天线分配相当狭窄的预定义方向。元件增益可以增大,以在预先定义的方向上提供方向性,元件间隔也可以增大,以实现更大孔径。这两种方法都能在较窄的波束角度下获得较大的整体天线增益。

注意,方程3表示最大间隔为一个波长,即使在零转向角度下也是如此。在一些情况下,如果栅瓣不出现在可见半圆内即可。以地球同步卫星为例,会以机械轴线校准为中心,按9°的转向角度覆盖整个地球。在这种情况下,只要栅瓣不落在地球表面就可以。因此,元件间隔可以达到几个波长,使得波束宽度更窄。

还有一些值得注意的天线结构,试图通过形成不一致的元件间隔来克服栅瓣问题。这些被归类为非周期阵列,以螺旋阵列为例。由于机械天线构造的原因,我们可能希望有一个通用的可以扩展为更大阵列的构建模块,但是,这会形成一致的阵列,会受所述的栅瓣条件影响。

波束斜视

在第1部分中,我们开头描述了在波峰接近元件阵列时,如何基于相对于轴线校准的波峰角度θ在元件之间出现时间延迟。对于单一频率,可以用相移代替时间延迟来实现波束转向。这种方法适用于窄带波形,但对于通过相移产生波束转向的宽带波形,波束可能转移方向(与频率呈函数关系)。如果我们记得时间延迟是线性相移与频率之间的关系,则可以直观地解释。所以,对于给定的波束方向,要求相移随频率变化。或者相反,对于给定的相移,波束方向随频率变化。波束角度随频率变化的状况,被称为波束斜视。

还考虑到在轴线校准位置θ = 0时,没有跨元件的相移,因此不会产生任何波束斜视。因此,波束斜视的量必须与角度θ和频率变化呈函数关系。图5显示一个X频段示例。在本例中,中心频率为10 GHz,调制带宽为2 GHz,且很显然波束随频率和初始波束角度的变化而改变方向。

图5.32元件线性阵在元件间隔为λ/2时,在X频段上的波束斜视示例。

波束斜视可以直接计算。使用公式1和公式2,可以计算得出波束方向偏差和波束斜视

此公式如图6所示。在图6中,显示的f/f0比率是有意的。前一个方程的倒数(f0/f)提供了一种更容易的方法,可以更直观地表示相对于中心频率的变化。

图6.几种频率偏差下的波束斜视和波束角度。

关于波束斜视的几点观察发现:

波束角度与频率的偏差随着波束角度偏离轴线校准的角度增大而增大。

低于中心频率的频率比高于中心频率的频率产生更大的偏差。

低于中心频率的频率会使波束更加远离轴线校准。

波束斜视考虑

波束斜视,即转向角度与频率的偏差,是由相移来实现时间延迟造成的。用真实时间延迟单元来执行波束转向则不会出现此问题。

既然波束斜视问题如此明显,为什么还有人使用移相器,而不是时间延迟单元呢?一般而言,这归因于设计简单,以及移相器和时间延迟单元的IC可用性。时间延迟以某些传输线的形式实现,所需的总延迟时间与孔径大小呈函数关系。到目前为止,大多数可用的模拟波束成型IC都是基于相移,但也出现了一些真实时间延迟IC系列,它们在相控阵中更加常见。

在数字波束成型中,真实时间延迟可以采用DSP逻辑和数字波束成型算法实现。因此,对于每个元件都数字化的相控阵架构,它本身就可以解决波束斜视问题,并提供最高的编程灵活性。但是,这种解决方案的功能、尺寸和成本都会造成问题。

在混合波束成型中,子阵采用模拟波束成型,全阵采用数字波束成型。这可以提供一些值得考虑的波束斜视减少。波束斜视只受子阵影响,子阵的波束宽度更宽,因此对波束角度偏差的容忍度更大。因此,只要子阵的波束斜视是可容忍的,即可在后接真实时间延迟(数字波束成型)的子阵内采用带移相器的混合波束成型结构。

总结

以上就是有关相控阵天线方向图三部分中的第2部分内容。在第1部分,我们介绍了波束指向和阵列因子。在第2部分,我们讨论栅瓣和波束斜视的缺点。在第3部分,我们将讨论如何通过天线变窄缩小旁瓣,并让您深入了解移相器量化误差。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 波束
    +关注

    关注

    0

    文章

    59

    浏览量

    16087
  • 相控阵天线
    +关注

    关注

    2

    文章

    46

    浏览量

    9425
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    使用双音法测试内置本振的相控阵天线

    相控阵天线已广泛应用于移动通信和卫星通信,在OTA暗室中使用矢量网络分析仪进行校准、无源和有源测试已经较为成熟。但对于内置本振的相控阵由于输入输出频率不一致且本振无法接入,常规测试方法无法进行稳定
    的头像 发表于 11-26 10:10 2492次阅读
    使用双音法测试内置本振的<b class='flag-5'>相控阵天线</b>

    波束成形技术:从原理到实践,如何精准控制无线信号方向

    在频谱资源日益紧张的今天,波束成形技术通过将射频能量聚焦成定向波束,成为提升无线通信容量与效率的关键。本文深入解析波束成形原理,并介绍德思特巴特勒矩阵如何以高稳定性、便携易用的方案,助力研发人员快速实现精准的
    的头像 发表于 11-21 10:18 269次阅读
    <b class='flag-5'>波束</b>成形技术:从原理到实践,如何精准控制无线信号<b class='flag-5'>方向</b>?

    科普 | 为什么低轨卫星地面终端不能使用机械伺服天线

    为什么低轨卫星地面终端不能使用机械伺服天线?在低轨卫星通信系统(如Starlink、OneWeb等)中,几乎所有地面终端都采用了有源相控阵天线。相较之下,传统机械伺服抛物面天线虽然技术成熟、成本低
    的头像 发表于 08-29 17:17 431次阅读
    科普 | 为什么低轨卫星地面终端不能使用机械伺服<b class='flag-5'>天线</b>?

    信号发生器如何与波束赋形算法配合优化?

    3D方向)。 信号生成:将算法输出的波束权重(幅度和相位)导入信号发生器,生成实际测试信号。 硬件验证:通过信号发生器和信道仿真器构建测试环境,验证硬件实现与算法仿真的一致性。 参数调优:根据测试
    发表于 08-08 14:41

    生成相位相干射频信号的三种策略

    随着无线系统对更高数据速率和更大覆盖范围的需求不断增长,工程师们采用多天线技术来实现分集、复用和波束成形来提高频谱效率和信噪比,以提升系统性能。
    的头像 发表于 07-28 10:11 2075次阅读
    生成相位相干射频信号的三种策略

    相控阵波束赋形芯片对卫星通信的必要性

    在卫星通信这个充满科技魅力的领域,每一次技术突破都可能重塑未来通信格局。今天就来聊聊其中的关键角色 — 相控阵波束赋形芯片,在卫星通信地面终端以及毫米波频段中到底有多重要。
    的头像 发表于 07-16 10:31 1104次阅读

    APMS多通道相参信号发生器/信号源-MIMO技术和相控阵雷达系统中的相参解决方案

    安铂克科技的APMS多通道相参信号发生器可满足多种应用的需求,例如测试相控阵波束成形天线、卫星有效载荷以及量子计算。通过独特的设计,信号发生器可提供出色的通道间相位相干性,并可扩展至几乎任何数量的通道。PHS选件增加了相位相干
    的头像 发表于 07-15 14:07 645次阅读
    APMS多通道相参信号发生器/信号源-MIMO技术和<b class='flag-5'>相控阵</b>雷达系统中的相参解决方案

    Analog Devices Inc. EVAL-CN0566评估板数据手册

    Analog Devices Inc.EVAL-CN0566评估板是一款相控阵波束成形天线演示平台。该板提供探索波束成形、波束转向、
    的头像 发表于 06-16 10:58 741次阅读
    Analog Devices Inc. EVAL-CN0566评估板数据手册

    卫星通信测试方案详解

    卫星通信系统的发展面临一系列的挑战与测试,如巨型低轨星座的组网、高吞吐量、高工作频段(Ka波段、Q波段、 V波段)、高带宽、多波束控制(采用相控阵天线)、低成本(要求卫星生产和发射成本更低)等。地面接收终端和卫星之间距离遥远,因而会影响链路预算或造成高路径损耗。
    的头像 发表于 05-26 14:47 1444次阅读
    卫星通信测试方案详解

    MVG推出SpeedProbe DL解决方案:有源相控阵天线校准速度提升至5倍

    系统高达5倍的校准速度,显著提升有源相控阵天线在防务领域的测试效率与性能。 MVG销售总监 Per Noren 表示:“SpeedProbe DL解决方案 在IDEX展会上
    发表于 04-21 16:35 1326次阅读
    MVG推出SpeedProbe DL解决方案:有源<b class='flag-5'>相控阵天线</b>校准速度提升至5倍

    深度解析如何利用时延解决方案最大化相控阵性能

    本文将探讨TDU在相控阵系统中的角色、它们与天线性能的关系,以及不同的设计考量如何影响系统效率。讨论还将深入到TDU与移相器的集成、真时延技术,以及波束宽度、扫描角和阵列尺寸之间的关系。
    的头像 发表于 03-25 11:36 1743次阅读
    深度解析如何利用时延解决方案最大化<b class='flag-5'>相控阵</b>性能

    真时延技术深度解析

    相控阵天线通过移相器、真时延或二者的组合,使合成波束更精确地指向阵列转向角度内的所需方向。本文将介绍这两种方法,以及更宽带宽的天线阵列是如何推动真时延在其系统设计中的应用。
    的头像 发表于 03-13 10:27 1349次阅读
    真时延技术深度解析

    拆了星链终端第三代,明白这相控阵天线的请留言!

    一谈起低轨卫星,大家势必会说起马斯克的星链。一谈起相控阵天线,大家还是绕不开马斯克的星链。星链给大家打了个样,一众企业在模仿,试图实现超越和跟随。最近,拆了一台第三代星链终端。但是,看不懂,完全
    的头像 发表于 03-05 17:34 5587次阅读
    拆了星链终端第三代,明白这<b class='flag-5'>相控阵天线</b>的请留言!

    罗德与施瓦茨和京瓷合作展示毫米波PAAM的OTA特性测试技术

    京瓷(Kyocera)开发了一款创新的毫米波相控阵天线模块(PAAM),能够同时在不同方向上以不同频率生成多个波束。这些PAAM将应用于5G FR2基础设施部署中,例如支持不同运营商在不同频段上运行
    的头像 发表于 03-05 16:23 884次阅读

    通过多张动来生动形象的理解雷达工作原理

    识别和重建等功能。 下面我们通过几张动,来生动形象的理解雷达的工作原理。 雷达原理 雷达扫描 相控阵雷达 相控阵天线 手势感应雷达 车载雷达  
    的头像 发表于 12-07 10:02 2178次阅读
    通过多张动<b class='flag-5'>图</b>来生动形象的理解雷达工作原理