0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用集成电路40106发现未知电容

电子设计 来源:eeweb 作者:Giovanni Di Maria 2021-05-07 14:16 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电压,导体的电阻或通过电线的电流是可以通过使用测试仪容易地测量的量。但是,如果您需要了解一个手工电容器的容量或不读取其板数据的电容器,则需要另一种测量仪器,即“电容表”,它通常很昂贵。有许多方法可以测量任何难度和精度的未知容量值。让我们看看如何借助理论轻松地测量这两个电量。

正弦交流电压下的电容器

当我们向电容器施加直流电压时,如果瞬变消失,则其行为就像开路一样。相反,当电容器处于正弦状态时,它的行为不再像开路那样,而是开始吸收电流,呈现出以欧姆表示的“电容电抗”。该分量类似于电阻。通过使用此原理,我们可以很容易地计算出未知电容器的值,并记住其电抗公式为:

Xc = 1÷2πfC

如果电容器受到正弦周期信号的影响,可以通过一些措施和一些方程式计算出其电容值。

方波电压

电容器方波电容器的行为不同。方波不存在电容电抗。电抗的概念本身取决于正弦信号的存在。由于方波信号是无限正弦波的总和,因此不能显着增加不同频率下正弦波的电抗。因为(理想)电容器是线性的,所以我们可以将方波分解成正弦分量,找到每个分量的相关正弦电压,然后将这些电压相加得出总电压。但是,此测量非常复杂,建议以其他方式更改策略并测量其电容值。

使用的策略

要测量电容器的电容,我们使用一种简单的方法:我们使用由CD40106反相逻辑门和RC网络组成的振荡器生成方波。通过更改C的值(未知),显然可以获得不同的频率。只需对这些值进行“曲线拟合”即可找到一个好的公式,该公式描述了所产生的频率与要显示的电容器的值之间的关系。

电气原理图

这是带有两个电气原理图的两种不同解决方案。第一张图专用于那些具有频率计并可以使用该仪器测量频率的人。它简单得多,几乎不需要电子元件。另一方面,第二个接线图适用于那些没有频率计而是简单的测试仪,甚至是便宜的测试仪的人。因此,该方案与第一种方案相似,但是使用了一个额外的频率/电压转换器来读取普通测试仪上的值。

具有频率计的用户

的第一个接线图第一个接线图更简单,如图1所示。心脏由集成电路CD40106表示,集成电路CD40106与C1和R1一起生成周期性方波信号。频率由C1和R1决定,但是由于R1是固定的,因此它与未知电容器成比例地变化。第一逻辑门(X1)产生信号,第二逻辑门(X2)用作阻抗缓冲器。这样,连接到其输出的任何负载都不会改变所产生信号的频率或幅度。后者在电阻R2上可用,准备使用频率计在频率上进行测量。

o4YBAGCU2Y-AbHTLAABpWtZkU20794.png

图1:带有频率计的设备的第一个接线图

图2显示了电路上这些点处的信号图:

  • 电容器上信号的蓝色曲线图(V2)
  • 第一个逆变器输出上的信号的红色曲线图(V1)
  • 第二个逆变器输出处的平方信号的绿色曲线图(V3)

pIYBAGCU2bWACQkVAAEF_dGJ74c811.png

图2:电路各个点的信号图

标度1 pF / 100 nF

下表包含所有理论频率值,这些值仅通过更换电容器C1即可测得。对于此测量范围(介于1 pF和100 nF之间),电阻R1必须为470 k。关系图如图3所示。

pIYBAGCU2ciAfu8kAABrUptuJjg189.png

图3:电路电容和频率之间的关系的对数图(R1 = 470 k)

F 赫兹
1个 277,393
5 193,611
10 140,449
22 84,667
47 46,419
100 23,706
220 11,245
470 5,367
1,000(1 nF) 2,542
3,300(3.3 nF) 775
4,700(4.7 nF) 544
10,000(10 nF) 256
22,000(22 nF) 116
47,000(47 nF) 54
100,000(100 nF) 25

对于该值范围,描述电容和频率之间关系的两个公式如图4所示。这是两个非常复杂的公式,它们是从非线性曲线拟合的高级过程中获得的。

o4YBAGCU2dqAKGyXAAIEnZYpdfM378.png

图4:描述两个量之间关系的两个公式

100-nF / 100-µF标度

下表包含替换电容器C1的所有测得的理论频率值。对于此测量范围(介于100 nF和100 µF之间),电阻R1必须为470Ω。关系图如图5所示。

pIYBAGCU2eyAK0fvAACSaw4X09U744.png

图5:电路电容和频率之间的关系的对数图(R1 = 470Ω)

µF 赫兹
0.1 19,139
0.5 3,540
1个 1,768
2.2 804
4.7 376
10 176
22 80
47 37
100 17

对于该值范围,描述电容和频率之间关系的两个公式如图6所示。

pIYBAGCU2hKANFhXAABH2_NU52w999.png

图6:描述两个量之间关系的两个公式

˚Figure 7示出了方波发生器电路和频率米之间的简单布线。对于测量仪器而言,重要的是能够读取周期性方波或矩形波信号的频率。

o4YBAGCU2iKAR0vQAALO6T05vAo660.png

图7:方波发生器和频率计之间的接线

仅具有测试人员的

用户的第二布线图仅具有测试人员的用户可以实施第二种解决方案。连接到第一个的附加电路将输出频率转换为负电压,可以由通用测试仪测量。与上一个电路相连的新电路是带有“泵”二极管的脉冲重复频率表。整个系统(参见图8)使我们能够根据要测量的电容C1获得负电压。

pIYBAGCU2jCANNNcAABGryTMH4U164.png

图8:拥有简单测试仪的人员的第二个电路

正脉冲负载在最大电压C2至D1处。在脉冲之间的间隔中,输入为0 V时,C2通过D2快速放电到大电容C3。因此,输出电压与接收脉冲的速度成正比。冷凝器C3类似于一个大罐,被R3慢慢排空。下表包含从不同测量收集的C1电容值不同的数据。该值是指介于100 nF和100 µF之间的电容。为了获得稳定的电压值,必须等待几秒钟的瞬变,如图9所示。

o4YBAGCU2kOAdnHzAACWImiWNRE145.png
图9:从测量开始几秒钟后获得的稳定电压值。

µF 测试仪R3上的电压(mV)
0.1(100 nF) –2,655毫伏
0.47(470 nF) –1,185毫伏
1个 –663.70毫伏
2.2 –334.43毫伏
4.7 –165.62毫伏
10 –80.36毫伏
22 –37.16毫伏
47 –17.48毫伏
100 –8.21毫伏

对于该值范围,描述电容和输出电压之间关系的公式如图10所示。

pIYBAGCU2l2AGSKRAAC_VbJNkZU079.png

图10:描述两个量之间关系的公式

˚Figure 11示出了方波发生器电路中,频率/电压转换器,并且在VDC模式下配置的正常测试器之间的布线。这是一个非常简单的连接,需要在简单的PCB内构建系统。

o4YBAGCU2myAQ6igAAKUYf6LnfE373.png

图11:方波发生器,频率/电压转换器和普通测试仪之间的接线

结论

本文中介绍的测量与各种SPICE模型的仿真有关。建议在实际电路上收集数据。用户可以根据所需的电容间隔自由创建自己的数学模型,还取决于瞬态的等待时间和RC时间常数,这可能会产生较长的等待时间。我们建议您尝试根据需要更改电子组件的值。如果在应用公式时遇到困难,则可以简单地查阅收集的数据表,然后通过内插法找到真实的经验数据。为了对数据进行曲线拟合,可以使用任何带有此可用选项的数学和统计软件。本文的主要目的是演示电子与数学是如何紧密联系在一起的。该项目可以针对不同的目的和功能进行任何修改或改进。

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5446

    文章

    12470

    浏览量

    372725
  • 电容器
    +关注

    关注

    64

    文章

    6946

    浏览量

    106636
  • 振荡器
    +关注

    关注

    28

    文章

    4156

    浏览量

    142332
  • 正弦交流
    +关注

    关注

    1

    文章

    17

    浏览量

    8804
  • 方波信号
    +关注

    关注

    0

    文章

    30

    浏览量

    14577
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    四维图新旗下杰科技亮相2025“中国芯”集成电路产业促进大会

    11月14日,2025年“中国芯”集成电路产业促进大会暨第二十届“中国芯”优秀产品征集结果发布仪式在珠海召开。四维图新旗下杰科技车规级MCU芯片AC7801凭借出色的市场表现与广泛应用,荣获“优秀市场表现产品”奖——这一成果也是杰
    的头像 发表于 11-17 11:41 1887次阅读
    四维图新旗下杰<b class='flag-5'>发</b>科技亮相2025“中国芯”<b class='flag-5'>集成电路</b>产业促进大会

    电机驱动与控制专用集成电路及应用

    的功率驱动部分。前级控制电路容易实现集成,通常是模拟数字混合集成电路。对于小功率系统,末级驱动电路也已集成化,称之为功率
    发表于 04-24 21:30

    电机控制专用集成电路PDF版

    本书共13章。第1章绪论,介绍国内外电机控制专用集成电路发展情况,电机控制和运动控制、智能功率集成电路概况,典型闭环控制系统可以集成的部分和要求。第2~7章,分别叙述直流电动机、无刷直流电动机、步进
    发表于 04-22 17:02

    中国集成电路大全 接口集成电路

    资料介绍本文系《中国集成电路大全》的接口集成电路分册,是国内第一次比较系统地介绍国产接口集成电路的系列、品种、特性和应用方而知识的书籍。全书共有总表、正文和附录三部分内容。总表部分列有国产接口
    发表于 04-21 16:33

    集成电路前段工艺的可靠性研究

    在之前的文章中我们已经对集成电路工艺的可靠性进行了简单的概述,本文将进一步探讨集成电路前段工艺可靠性。
    的头像 发表于 03-18 16:08 1496次阅读
    <b class='flag-5'>集成电路</b>前段工艺的可靠性研究

    集成电路制造中的电镀工艺介绍

    本文介绍了集成电路制造工艺中的电镀工艺的概念、应用和工艺流程。
    的头像 发表于 03-13 14:48 2046次阅读
    <b class='flag-5'>集成电路</b>制造中的电镀工艺介绍

    集成电路和光子集成技术的发展历程

    本文介绍了集成电路和光子集成技术的发展历程,并详细介绍了铌酸锂光子集成技术和硅和铌酸锂复合薄膜技术。
    的头像 发表于 03-12 15:21 1559次阅读
    <b class='flag-5'>集成电路</b>和光子<b class='flag-5'>集成</b>技术的发展历程

    集成电路产业新地标 集成电路设计园二期推动产业创新能级提升

    在2025海淀区经济社会高质量发展大会上,海淀区对18个园区(楼宇)的优质产业空间及更新改造的城市高品质空间进行重点推介,诚邀企业来海淀“安家”。2024年8月30日正式揭牌的集成电路设计园二期就是
    的头像 发表于 03-12 10:18 793次阅读

    集成电路技术的优势与挑战

    硅作为半导体材料在集成电路应用中的核心地位无可争议,然而,随着科技的进步和器件特征尺寸的不断缩小,硅集成电路技术正面临着一系列挑战,本文分述如下:1.硅集成电路的优势与地位;2.硅材料对CPU性能的影响;3.硅材料的技术革新。
    的头像 发表于 03-03 09:21 1208次阅读
    硅<b class='flag-5'>集成电路</b>技术的优势与挑战

    爱普生(EPSON) 集成电路IC

    随着技术的发展,Epson在集成电路(IC)方面的研发和生产也逐步成为其重要的业务之一。Epson的集成电路主要应用于各种电子设备中,包括消费类电子、工业设备、汽车电子等多个领域。爱普生利用极低
    的头像 发表于 02-26 17:01 731次阅读
    爱普生(EPSON) <b class='flag-5'>集成电路</b>IC

    集成电路为什么要封胶?

    集成电路为什么要封胶?汉思新材料:集成电路为什么要封胶集成电路封胶的主要原因在于提供多重保护和增强性能,具体来说包括以下几个方面:防止环境因素损害:集成电路在工作过程中可能会受到静电、
    的头像 发表于 02-14 10:28 883次阅读
    <b class='flag-5'>集成电路</b>为什么要封胶?

    集成电路的引脚识别及故障检测

    一、集成电路的引脚识别 集成电路是在同一块半导体材料上,利用各种不同的加工方法同时制作出许多极其微小的电阻、电容及晶体管等电路元器件,并将它们相互连接起来,使之具有特定功能的
    的头像 发表于 02-11 14:21 1762次阅读

    增资1999倍!北京继续集成电路

    ▍ 燕东微等上市公司联手北京国资入股 北电集成增资至200亿 来源:芯榜 北京继续集成电路产业。 本次北电集成注册资本 由1000万人民币增至200亿人民币,增长了 1999 倍
    的头像 发表于 02-10 11:38 838次阅读

    探索集成电路的奥秘

    在当今数字化的时代,电子技术改变着我们的生活方式。而集成电路,作为电子技术的核心驱动力,更是发挥着至关重要的作用。 集成电路,简称 IC,是将大量的晶体管、电阻、电容等电子元件以及它们之间的连线
    的头像 发表于 02-05 11:06 622次阅读

    集成电路封装的发展历程

    (1)集成电路封装 集成电路封装是指将制备合格芯片、元件等装配到载体上,采用适当连接技术形成电气连接,安装外壳,构成有效组件的整个过程,封装主要起着安放、固定、密封、保护芯片,以及确保电路性能和热性
    的头像 发表于 01-03 13:53 1571次阅读
    <b class='flag-5'>集成电路</b>封装的发展历程