0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

简述PCB叠层设计

电子设计 来源:电子设计 作者:电子设计 2020-10-30 15:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

总的来说叠层设计主要要遵从两个规矩:

1. 每个走线层都必须有一个邻近的参考层(电源或地层);

2. 邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容;

下面列出从两层板到十层板的叠层:

一、单面 PCB 板和双面 PCB 板的叠层

对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制 EMI 辐射主要从布线和布局来考虑;

单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因是信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。

关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低的模拟信号。

单、双层板通常使用在低于 10KHz 的低频模拟设计中:

1 在同一层的电源走线以辐射状走线,并最小化线的长度总和;


2 走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取道这个回路,而不是其它地线路径。


3 如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。这样形成的回路面积等于线路板的厚度乘以信号线的长度。

二、四层板的叠层

推荐叠层方式:


1. SIG-GND(PWR)-PWR (GND)-SIG;


2. GND-SIG(PWR)-SIG(PWR)-GND;

对于以上两种叠层设计,潜在的问题是对于传统的 1.6mm(62mil)板厚。层间距将会变得很大,不仅不利于控制阻抗,层间耦合及屏蔽;特别是电源地层之间间距很大,降低了板电容,不利于滤除噪声。

对于第一种方案,通常应用于板上芯片较多的情况。这种方案可得到较好的 SI 性能,对于 EMI 性能来说并不是很好,主要要通过走线及其他细节来控制。主要注意:地层放在信号最密集的信号层的相连层,有利于吸收和抑制辐射;增大板面积,体现 20H 规则。


对于第二种方案,通常应用于板上芯片密度足够低和芯片周围有足够面积(放置所要求的电源覆铜层)的场合。此种方案 PCB 的外层均为地层,中间两层均为信号 / 电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低,也可通过外层地屏蔽内层信号辐射。从 EMI 控制的角度看, 这是现有的最佳 4 层 PCB 结构。主要注意:中间两层信号、电源混合层间距要拉开,走线方向垂直,避免出现串扰;适当控制板面积,体现 20H 规则;如果要控 制走线阻抗,上述方案要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜之间应尽可能地互连在一起,以确保 DC 和低频的连接性。

三、六层板的叠层

一、 对于芯片密度较大、时钟频率较高的设计应考虑 6 层板的设计

推荐叠层方式:


1.SIG-GND-SIG-PWR-GND-SIG;

对于这种方案,这种叠层方案可得到较好的信号完整性,信号层与接地层相邻,电源层和接地层配对,每个走线层的阻抗都可较好控制,且两个地层都是能良好的吸收磁力线。并且在电源、地层完整的情况下能为每个信号层都提供较好的回流路径。

2.GND-SIG-GND-PWR-SIG -GND;

对于这种方案,该种方案只适用于器件密度不是很高的情况,这种叠层具有上面叠层的所有优点,并且这样顶层和底层的地平面比较完整,能作为一个较好的屏蔽层 来使用。需要注意的是电源层要靠近非主元件面的那一层,因为底层的平面会更完整。因此,EMI 性能要比第一种方案好。

小结:对于六层板的方案,电源层与地层之间的间距应尽量减小,以获得好的电源、地耦合。但 62mil 的板厚,层间距虽然得到减小,还是不容易把主电源与地 层之间的间距控制得很小。对比第一种方案与第二种方案,第二种方案成本要大大增加。因此,我们叠层时通常选择第一种方案。设计时,遵循 20H 规则和镜像层 规则设计

四、八层板的叠层

八层板通常使用下面三种叠层方式

A:由于差的电磁吸收能力和大的电源阻抗导致这种不是一种好的叠层方式。它的结构如下:


1.Signal 1 元件面、微带走线层


2.Signal 2 内部微带走线层,较好的走线层(X 方向)


3.Ground


4.Signal 3 带状线走线层,较好的走线层(Y 方向)


5.Signal 4 带状线走线层


6.Power


7.Signal 5 内部微带走线层


8.Signal 6 微带走线层

B:是第三种叠层方式的变种,由于增加了参考层,具有较好的 EMI 性能,各信号层的特性阻抗可以很好的控制

1.Signal 1 元件面、微带走线层,好的走线层


2.Ground 地层,较好的电磁波吸收能力


3.Signal 2 带状线走线层,好的走线层


4.Power 电源层,与下面的地层构成优秀的电磁吸收


5.Ground 地层


6.Signal 3 带状线走线层,好的走线层


7.Power 地层,具有较大的电源阻抗


8.Signal 4 微带走线层,好的走线层

C:最佳叠层方式,由于多层地参考平面的使用具有非常好的地磁吸收能力。

1.Signal 1 元件面、微带走线层,好的走线层


2.Ground 地层,较好的电磁波吸收能力


3.Signal 2 带状线走线层,好的走线层


4.Power 电源层,与下面的地层构成优秀的电磁吸收


5.Ground 地层


6.Signal 3 带状线走线层,好的走线层


7.Ground 地层,较好的电磁波吸收能力


8.Signal 4 微带走线层,好的走线层

对于如何选择设计用几层板和用什么方式的叠层,要根据板上信号网络的数量,器件密度,PIN 密度,信号的频率,板的大小等许多因素。对于这些因素我们要综 合考虑。对于信号网络的数量越多,器件密度越大,PIN 密度越大,信号的频率越高的设计应尽量采用多层板设计。为得到好的 EMI 性能最好保证每个信号层都 有自己的参考层。

审核编辑 黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pcb
    pcb
    +关注

    关注

    4391

    文章

    23741

    浏览量

    420594
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    固态电容:小型化封装,释放PCB更多空间

    固态电容通过小型化封装设计,显著释放PCB空间,同时保持高性能与可靠性,成为高密度电子系统的理想选择。
    的头像 发表于 12-05 16:15 51次阅读

    电容是如何实现高频噪声抑制的?

    主题:求解电容的高频秘诀:其工艺是如何实现极低ESL和高自谐振频率的? 我们了解到超低ESR
    发表于 12-04 09:19

    晶科能源再度实现钙钛矿/TOPCon电池转换效率突破

    11月27日,全球领先的光伏企业晶科能源宣布,经国家光伏产业计量测试中心(NPVM)权威认证,其基于N型TOPCon的钙钛矿电池转化效率突破34.76%,刷新了此前保持的同类
    的头像 发表于 12-02 17:50 981次阅读

    固态电容的性能优势

    固态电容(MLPC)凭借其独特的结构设计与材料特性,在性能上展现出显著优势,尤其在小型化、高频特性、抗振性、高温稳定性及安全性方面表现突出,以下是详细分析: 一、小型化与高容量密度:突破空间限制
    的头像 发表于 11-26 09:30 265次阅读

    永铭电容:笔记本电脑中的性能加速器

    1笔记本电脑市场现况随着远程办公和移动办公趋势的加强,消费者对轻薄、高性能的笔记本电脑需求不断上升,这推动了笔记本电脑制造商在产品设计和性能提升上不断创新。在这样的背景下,永铭推出的电容器凭借其
    的头像 发表于 09-01 10:07 517次阅读
    永铭<b class='flag-5'>叠</b><b class='flag-5'>层</b>电容:笔记本电脑中的性能加速器

    贴片电感代理-电感的实际应用

    电感,作为一种基于多层陶瓷或磁性材料制成的电感元件,以其小型化、高频特性好、品质因数高、散热性能好及抗干扰能力强等优势,在消费电子、工业自动化及汽车电子等领域得到了广泛应用。以下将详细阐述
    的头像 发表于 08-22 17:38 674次阅读
    贴片电感代理-<b class='flag-5'>叠</b><b class='flag-5'>层</b>电感的实际应用

    如何为EMC设计选择PCB结构

    在设计电磁兼容性(EMC)表现优异的 PCB 时,结构的选择是需要掌握的核心概念之一。
    的头像 发表于 07-15 10:25 6196次阅读
    如何为EMC设计选择<b class='flag-5'>PCB</b><b class='flag-5'>叠</b><b class='flag-5'>层</b>结构

    Allegro Skill工艺辅助之导入模板

    PCB设计中,导入模板能够确保设计的标准化和规范化,避免因手动设置参数而可能出现的错误或不一致情况。
    的头像 发表于 07-10 17:10 2804次阅读
    Allegro Skill工艺辅助之导入<b class='flag-5'>叠</b><b class='flag-5'>层</b>模板

    PCB设计避坑指南

    每次PCB设计最让你头疼的是什么?是密密麻麻的走线?还是让人抓狂的EMI问题?问题的根源可能藏在你看不见的地方——PCB结构。当你的设计从实验室小批量转到批量生产时,是否遇到过信号
    的头像 发表于 06-25 07:36 2390次阅读
    <b class='flag-5'>PCB</b><b class='flag-5'>叠</b><b class='flag-5'>层</b>设计避坑指南

    PCB设计避坑指南

    每次PCB设计最让你头疼的是什么?是密密麻麻的走线?还是让人抓狂的EMI问题?问题的根源可能藏在你看不见的地方—— PCB结构 。 当你的设计从实验室小批量转到批量生产时,是否遇到
    发表于 06-24 20:09

    天合光能再度刷新组件功率世界纪录

    继6月9日宣布钙钛矿/晶体硅30.6%组件效率及829W组件功率双世界纪录后,天合光能今日再传喜讯——
    的头像 发表于 06-13 15:58 725次阅读

    天合光能钙钛矿晶体硅组件再次刷新世界纪录

    天合光能宣布,其光伏科学与技术全国重点实验室自主研发的大面积钙钛矿/晶体硅组件在转换效率方面取得重大突破,经德国夫琅禾费太阳能研究所(Fraunhofer ISE)独立测试认证,面积为1185cm²的实验室
    的头像 发表于 06-11 16:03 653次阅读

    捷多邦专家解读:如何选择最优PCB方案?

    PCB设计中,多层板的设计直接影响信号完整性、电源分配和EMC性能。合理的结构不仅能提升电路板的可靠性,还能优化生产成本。作为行业
    的头像 发表于 05-11 10:58 529次阅读

    效率超30%!双面钙钛矿/晶硅电池的IBC光栅设计与性能优化

    全球正致力于提升钙钛矿光伏电池的效率,其中太阳能电池(TSCs)因其高效率、低热损耗和易于集成成为研究热点。本研究采用美能绒面反射仪RTIS等先进表征手段,系统分析了双面钙钛矿/硅
    的头像 发表于 04-16 09:05 1089次阅读
    效率超30%!双面钙钛矿/晶硅<b class='flag-5'>叠</b><b class='flag-5'>层</b>电池的IBC光栅设计与性能优化

    天合光能钙钛矿晶体硅技术再破世界纪录

    今日,位于天合光能的光伏科学与技术全国重点实验室宣布钙钛矿晶体硅技术再破纪录,其自主研发的210mm大面积钙钛矿/晶体硅两端太阳电池,经德国夫琅禾费太阳能研究所下属的检测实验室
    的头像 发表于 04-11 15:50 716次阅读