0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

应用于CNN中卷积运算的LUT乘法器设计

电子设计 来源:AI加速微信公众号 作者:AI加速微信公众号 2020-11-30 11:45 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积占据了CNN网络中绝大部分运算,进行乘法运算通常都是使用FPGA中的DSP,这样算力就受到了器件中DSP资源的限制。比如在zynq7000器件中,DSP资源就较少,神经网络的性能就无法得到提升。利用xilinx器件中LUT的结构特征,设计出的乘法器不但能灵活适应数据位宽,而且能最大限度降低LUT资源使用。

Xilinx ultrascale器件LUT结构
在这里简要介绍一下ultrascale系列器件中的LUT结构,有助于后边对乘法器设计思路的理解。CLB(configuratble logic block)是主要的资源模块,其包含了8个LUT,16个寄存器,carry逻辑,以及多路选通器等。其中LUT可以用作6输入1输出,或者两个5输入LUT,但是这两个LUT公用输入,具有不同输出。每个LUT输出可以连接到寄存器或者锁存器,或者从CLB输出。LUT可以用于64x1和32X2的分布式RAM,一个CLB内最大可以支持512X1大小的RAM。RAM的读写地址和输入的读写数据是共享的,数据通道可以使用x和I接口。LUT还可以配置用于4:1选通器,CLB最大能够支持到32:1的选通器。CLB中的carry逻辑含有异或门和产生进位的门,用于生成进位数据。

图1.1 LUT结构

LUT还可以被动态配置成32bit移位寄存器,这个功能在乘法器设计中可以用于改变乘法器的乘数和被乘数。在写入LUT数据的时候,每个时钟周期从D接口进入数据,依次写入32bit数据。读数据的时候,可以通过地址来定位任何32bit中的数据。这样就可以配置成任何小于32bit的移位寄存器。移位输出Q31可以进入下一级LUT用于串联产生更大移位寄存器。在一个CLB中最大可以串联产生256bit移位寄存器。

图1.2 移位寄存器配置

LUT乘法器原理
首先假设我们处理整数乘法,小数乘法也可以用这样的方法。基本思想就是将m bit大小的数据进行分割表示:

这样就将两个数据乘法分解成低bit数据乘法,结果是一个常数K和di相乘,然后再进行移位求和。M bit数据分解后的低bit数据位宽通常都适配LUT输入宽度,这样能最大利用LUT资源。现在乘法只有K*di,由于bit位宽较小,这部分可以用LUT查找表的形式来。预先将0K到(2^q-1)K的数据存储到LUT中,然后通过di来选择对应的数据。如果是负数乘法,那么数据使用补码表示,那么LUT中存储的数据是从-2^(q-1)K到(2^(q-1)-1)K。针对以上介绍的ultrascale器件的LUT6,q可以选择为5。但是在本论文中使用的是LUT4器件,其只有4输入,因此选择了q=3,为什么没有选择4呢?另外1bit是为了用于半加器的实现。

基本结构
实现上述累加的方法有很多种,论文中采用了进位链加法器。图2.1中是m bit和n bit数据乘法,每个E结构计算di*K,并且和上一个结构求和,输出的低3bit直接作为最终结果,而n bit传输到下一级进行计算。q=3的计算单元E有[m/3]个。K*di是有n+3bit的查找表实现的。查找表的结果由di选择,然后再通过一个求和器和之前数据求和。这是一个最基本的结构,论文又针对这个结构做了优化,用一个LUT同时实现了一个查找表和半加器。具体来讲,其中3bit输入用于di,还有1bit用于上一次输出,LUT中存放数据是di*K和上一次结果第j bit的半加结果,实际上是第j bit数据LUT中结果的异或。而进位数据由CLB中相应的carry逻辑来计算。相比于粗暴的进行数据求和,这样精确的来控制LUT能够大大节省资源。

图2.1 基本结构

图2.2 LUT实现乘法和半加,外围carry逻辑实现进位

动态配置LUT内容
Xilinx的LUT结构允许在运行过程中改变LUT中的内容,这样的乘法器就能改变被乘数据K。这可以实现在神经网络计算中需要更新权重参数。论文中使用的是LUT4,所以一个LUT可以被配置成16bit移位寄存器。通过这16bit寄存器可以来配置LUT中的内容,每个时钟周期更新1bit数据,16个时钟周期可以完成一个LUT中数据更新。是否进行LUT内容更新通过CE使能信号控制。

如何产生LUT中数据的值呢?如果上一次输出数据对应bit为0,那么LUT中就存放0*K到7*K的值,如果上一次对应bit为1,那么存放值为对以上数据取反。图4.1表示了获得LUT中内容的电路图。首先数据被初始化为0*K,下一次对应着求和进位为1的情况,取反,然后再加K得到1*K的值,这样每隔两个时钟周期就得到下一个乘法的数据值,依次对LUT进行更新。上述中针对的是正整数,如果对于负数乘法更新,可以在上述求整数乘法的电路基础上做一下改进,如图4.2。当最高位为0的时候,输出结果就是之前求得的乘法结果。如果最高位是1,那么负数的补码表示是乘法的原码结果减去最高位数值。

图4.1 LUT中内容更新电路图

图4.2 负数乘法结果更新电路

结果分析
最后我们来看看这种乘法器的实现效果,图5.1表示对多级进位不适用pipeline结构的时钟频率随着被乘数K位宽变化,可以看到随着级数E的增加,频率降低很多,这主要是进位链边长导致。而随着K位宽增加,频率也有降低,这主要是因为实现di*K乘法的LUT资源增加导致。

图5.1 没有pipeline下频率MHz

图5.1 没有pipeline下频率MHz

图5.2是不同乘法位宽下的使用slice数量。论文中考虑了两种极端情况,一种是完全pipeline下,即每级计算单元都经过寄存器,另外一种是完全没有pipeline,所有级E都是串联。

图5.2 slice资源

结论
上述通过LUT来设计乘法器的方法,可以应用于CNN中的卷积运算当中,因为权重可以被当做被乘数,用于LUT内容的配置,在更换权重时,可以对LUT内容更新,这样就能避免了DSP资源的限制,不失为一种增加算力的方法。

文献
1. Hormigo, J.C., Gabriel Oliver, Juan P.Boemo, Eduardo, Self-Reconfigurable Constant Multiplier for FPGA. ACM Transactions on Reconfigurable Technology and Systems, 2013. 6

编辑:hfy


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • dsp
    dsp
    +关注

    关注

    559

    文章

    8214

    浏览量

    363968
  • FPGA
    +关注

    关注

    1655

    文章

    22283

    浏览量

    630277
  • 寄存器
    +关注

    关注

    31

    文章

    5589

    浏览量

    129063
  • cnn
    cnn
    +关注

    关注

    3

    文章

    355

    浏览量

    23248
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    使用Xilinx 7系列FPGA的四位乘法器设计

    (Shinshu University)研究团队的最新设计,一个专为 Xilinx 7 系列 FPGA 量身打造的 4 位乘法器使用了仅 11 个 LUT + 2 个 CARRY4 块,关键路径延迟达到 2.75 ns。这是一
    的头像 发表于 11-17 09:49 2724次阅读
    使用Xilinx 7系列FPGA的四位<b class='flag-5'>乘法器</b>设计

    E203在基于wallace树+booth编码的乘法器优化后的跑分结果

    优化思路 E203为了实现低功耗的要求,乘法器为基于booth编码和移位加法器结合的思路,优点是只需要一个加法器,而且该加法器还和除法器复用
    发表于 10-27 07:54

    E203V2长周期乘法器核心booth算法解读

    。 E203V2多周期运算单元乘法器booth编码具体如下: 进行乘法运算时所调用的加法器
    发表于 10-24 09:33

    Verilog实现使用Booth编码和Wallace树的定点补码乘法器原理

    周期乘法器乘法器,对于无符号乘法进行一位符号扩展后统一当作有符号数进行运算,因此需要17个迭代周期。为了改良乘法器性能,我们可以使用Boo
    发表于 10-23 08:01

    改进wallance树乘法器优化方法

    首先,根据之前分享的乘法器的优缺点,我们针对17周期的乘法器进行优化,为乘法设计的专用数据通路,为了保持e203的低功耗、低面积的优点、我们仍采用基4booth算法进行部分积生成,而对于原有的17
    发表于 10-23 06:37

    关于E203内核高性能乘法器优化(一)

    的产生和部分积的压缩两部分,研究乘法器的方法一般是减少部分积的产生个数和提高部分积压缩的速度。 2.1迭代乘法器 迭代乘法器与手算乘法最接近,对于一个n位宽的
    发表于 10-23 06:09

    蜂鸟乘法器设计分享

    蜂鸟的乘法器主体设计在ALU模块的子单元MDV模块,MDV模块包括乘除法器逻辑设计,它只包含运算控制,但并不包含具体运算,它们都需要将部分
    发表于 10-22 08:21

    改进型乘法器结构设计

    的高32位。控制信号控制部分积产生和部分积压缩对操作数和部分积的处理,从而完成乘法器乘法运算。 译码模块对乘法指令进行译码,基4 Booth编码接收控制信号对被乘数和乘数进行符号扩
    发表于 10-22 07:51

    蜂鸟E203乘法器改进

    蜂鸟E203为了节约资源,乘法运算采用循环移位方式计算最终结果,这样的乘法器需要经过较多时钟周期来处理数据,导致处理数据效率较低。为了提高计算效率,这里分享一种基于流水线思想的乘法器
    发表于 10-22 07:28

    e203乘法运算结构及算法原理

    乘法运算。 考虑到E203的定位以及性能、功耗与芯片面积的平衡,E203采用了一些恰到好处的资源复用设计。 首先,乘法器每周器的加法操作是通过复用ALU
    发表于 10-22 06:43

    蜂鸟E203内核乘法器的优化

    乘法器的优化实现一般从两个方面入手。第一是减少生成的部分积数量,另外就是减少部分积累加的延时。 在开源的E203源码,32*32乘法器是利用radix-4 booth编码产生部分积,每个周期做一次
    发表于 10-22 06:11

    优化boot4的乘法运算周期

    优化电路设计:在电路设计,优化关键路径和信号传输路线,使用更高速的逻辑单元和存储器元件来降低延迟,从而缩短乘法器运算周期。 利用流水线技术:使用流水线技术将乘法操作分成多个阶段,使
    发表于 10-21 13:17

    优化boot4乘法器方法

    优化电路设计:在电路设计,可以采用更快速的逻辑单元和存储器元件,优化关键路径和信号传输路线,从而降低延迟,缩短乘法器运算周期。 固定位宽:Boot4乘法器可以处理不同位宽的数据,但
    发表于 10-21 12:13

    ADL5390 RF矢量乘法器技术手册

    ADL5390矢量乘法器由一对匹配的宽带可变增益放大器组成,二者输出相加,每个放大器具有单独的线性幅度增益控制。如果两个输入RF信号正交,则可以将该矢量乘法器配置为矢量调制器,或将增益控制引脚用作
    的头像 发表于 04-09 10:02 729次阅读
    ADL5390 RF矢量<b class='flag-5'>乘法器</b>技术手册

    ADA-28F00WG乘法器Marki

    ADA-28F00WG是一种高性能的模拟乘法器,能够将两个输入信号(电压或电流)进行乘法运算,并输出其结果。ADA-28F00WG乘法器采用高质量材料制造,并结合了最新的肖特基二极管和
    发表于 02-12 09:25