0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络的七个注意事项

如意 来源:CSDN 作者:呆呆的猫 2020-08-24 16:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积神经网络注意事项

1)数据集的大小和分块

数据驱动的模型一般依赖于数据集的大小,CNN和其他经验模型一样,能够适用于任意大小的数据集,但用于训练的数据集应该足够大, 能够覆盖问题域中所有已知可能出现的问题,

设计CNN的时候,数据集应该包含三个子集:训练集、测试集、验证集

训练集:包含问题域中的所有数据,并在训练阶段用来调整网络的权重

测试集:在训练的过程中用于测试网络对训练集中未出现的数据的分类性能,根据网络在测试集上的性能情况,网络的结构可能需要作出调整,或者增加训练循环次数。

验证集:验证集中的数据统一应该包含在测试集和训练集中没有出现过的数据,用于在网络确定之后能够更好的测试和衡量网络的性能

Looney等人建议,数据集中65%的用于训练,25%的用于测试,10%用于验证

2)数据预处理

为了加速训练算法的收敛速度,一般都会采用一些数据预处理技术,其中包括:去除噪声、输入数据降维、删除无关数据等。

数据的平衡化在分类问题中异常重要,一般认为训练集中的数据应该相对于标签类别近似于平均分布,也就是每一个类别标签所对应的数据集在训练集中是基本相等的,以避免网络过于倾向于表现某些分类的特点。

为了平衡数据集,应该移除一些过度富余的分类中的数据,并相应补充一些相对样例稀少的分类中的数据。

还有一个方法就是复制一部分这些样例稀少分类中的数据,并在这些数据中加入随机噪声。

3)数据规则化

将数据规则化到统一的区间(如[0,1])中具有很重要的优点:防止数据中存在较大数值的数据造成数值较小的数据对于训练效果减弱甚至无效化,一个常用的方法是将输入和输出数据按比例调整到一个和激活函数相对应的区间。

4)网络权值初始化

CNN的初始化主要是初始化卷积层和输出层的卷积核(权值)和偏置

网络权值初始化就是将网络中的所有连接权重赋予一个初始值,如果初始权重向量处在误差曲面的一个相对平缓的区域的时候,网络训练的收敛速度可能会很缓慢,一般情况下网络的连接权重和阈值被初始化在一个具有0均值的相对小的区间内均匀分布。

5)BP算法的学习速率

如果学习速率选取的较大,则会在训练过程中较大幅度的调整权值w,从而加快网络的训练速度,但是这和造成网络在误差曲面上搜索过程中频繁抖动,且有可能使得训练过程不能收敛。

如果学习速率选取的较小,能够稳定的使得网络逼近于全局最优点,但也可能陷入一些局部最优,并且参数更新速度较慢。

自适应学习率设定有较好的效果。

6)收敛条件

有几个条件可以作为停止训练的判定条件,训练误差、误差梯度、交叉验证等。一般来说,训练集的误差会随着网络训练的进行而逐步降低。

7)训练方式

训练样例可以有两种基本的方式提供给网络训练使用,也可以是两者的结合:逐个样例训练(EET)、批量样例训练(BT)。

在EET中,先将第一个样例提供给网络,然后开始应用BP算法训练网络,直到训练误差降低到一个可以接受的范围,或者进行了指定步骤的训练次数。然后再将第二个样例提供给网络训练。

EET的优点是相对于BT只需要很少的存储空间,并且有更好的随机搜索能力,防止训练过程陷入局部最小区域。

EET的缺点是如果网络接收到的第一个样例就是劣质(有可能是噪音数据或者特征不明显)的数据,可能使得网络训练过程朝着全局误差最小化的反方向进行搜索。

相对的,BT方法是在所有训练样例都经过网络传播后才更新一次权值,因此每一次学习周期就包含了所有的训练样例数据。

BT方法的缺点也很明显,需要大量的存储空间,而且相比EET更容易陷入局部最小区域。

而随机训练(ST)则是相对于EET和BT一种折衷的方法,ST和EET一样也是一次只接受一个训练样例,但只进行一次BP算法并更新权值,然后接受下一个样例重复同样的步骤计算并更新权值,并且在接受训练集最后一个样例后,重新回到第一个样例进行计算。

ST和EET相比,保留了随机搜索的能力,同时又避免了训练样例中最开始几个样例如果出现劣质数据对训练过程的过度不良影响。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106767
  • 算法
    +关注

    关注

    23

    文章

    4760

    浏览量

    97121
  • 卷积
    +关注

    关注

    0

    文章

    95

    浏览量

    18923
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像处理中尤其常见,因为图像本身就可以看作是由像
    的头像 发表于 11-19 18:15 1825次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是<b class='flag-5'>个</b>啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x&gt;0 时,梯度恒为1,无梯度耗散问题,收敛快;当x&lt;0 时,该层的输出为0。 CNN
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    (q7_t) 和 16 位整数 (q15_t)。 卷积神经网络示例: 本示例中使用的 CNN 基于来自 Caffe 的 CIFAR-10 示例。神经网络由 3
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    整个模型非常巨大。所以要想实现轻量级的CNN神经网络模型,首先应该避免尝试单层神经网络。 2)减少卷积核的大小:CNN神经网络是通过权值共享的方式,利用
    发表于 10-28 08:02

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    在完成神经网络量化后,需要将神经网络部署到硬件加速器上。首先需要将所有权重数据以及输入数据导入到存储器内。 在仿真环境下,可将其存于一文件,并在 Verilog 代码中通过 readmemh 函数
    发表于 10-20 08:00

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 651次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 1301次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1269次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 1338次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP
    的头像 发表于 02-12 15:13 1504次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一简单的神经网络神经网络由多个神经元组成,
    的头像 发表于 01-23 13:52 838次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2233次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法