0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用图卷积网络解决语义分割问题

智能感知与物联网技术研究所 来源:通信信号处理研究所 2020-05-13 15:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

使用 CNN 处理图像问题已经是常规操作,但此类方法会造成局部位置信息的损失。如何解决这个问题呢?来自中科院自动化所和北京中医药大学的研究者另辟蹊径,提出用图卷积网络解决语义分割问题。

论文链接:https://arxiv.org/pdf/2001.00335.pdf 使用深度学习执行语义分割在图像像素分类方面取得了巨大进步。但是,深度学习提取高级特征时往往忽略了局部位置信息(local location information),而这对于图像语义分割而言非常重要。 为了避免上述问题,来自中科院自动化所、北京中医药大学的研究者们提出一个执行图像语义分割任务的图模型 Graph-FCN,该模型由全卷积网络(FCN)进行初始化。 首先,通过卷积网络将图像网格数据扩展至图结构数据,这样就把语义分割问题转换成了图节点分类问题;然后,使用图卷积网络解决图节点分类问题。 研究者称,这是首次将图卷积网络用于图像语义分割的尝试。该方法在 VOC 数据集上获得了有竞争力的 mIOU 性能,相比原始 FCN 模型有 1.34% 的性能提升。

Graph-FCN 架构图。

语义分割问题的难点 语义分割是计算机视觉领域中的重要课题,其复杂程度超过分类和检测任务。这项密集预测任务需要预测每个像素的类别,也就是说它需要从高级语义信息和局部位置信息中学习目标轮廓、目标位置和目标类别。 基于深度学习的语义分割方法,具体而言即卷积神经网络(CNN),为该领域带来了一系列巨大进展。提取高级特征的强大泛化能力使得图像分类和检测任务取得了非常好的性能,但伴随泛化而来的局部位置信息损失则为密集预测任务增加了难度。具备较大感受野的高级语义信息对应卷积神经网络中的小型特征图,这类图会造成像素级局部位置信息的损失。 多种基于深度学习的方法对该问题带来了改进,如全卷积网络 [16]、Segent [1]、Deeplab 方法 [2,3,4]。这些工作使用全连接层、空洞卷积和金字塔结构,来减少提取高级特征过程中的位置信息损失。 中科院等提出语义分割难题新解法 首先,研究者为图像语义分割问题构建图节点模型。图模型方法广泛应用于分割问题,这类方法将像素视作节点,将节点之间的差异度(dissimilarity)视作边(edge)。最优的分割即对图执行最大割(maximum cut)。 结合了概率论和图论的概率图模型方法(如马尔可夫随机场和条件随机场)被用于细化语义分割结果。这些方法将检测到的目标建模为图节点,通过提取目标之间的关系来改进检测准确率。相比于深度卷积模型把输入数据表示为网格结构,图模型具备更灵活的跳跃连接(skip connection),因此它可以探索图中节点之间的关系。 受限于计算量,研究者使用 FCN 初始化该图模型。该图模型基于小尺寸图像构建,其节点标注由 FCN 进行初始化,边的权重则由高斯核函数进行初始化。

图 1:FCN 结构示意图。本研究使用 FCN-16s 作为基础模型对节点标注进行初始化。 然后使用图卷积网络(GCN)解决这个图模型。GCN 是处理图结构数据的当前最优模型之一。基于节点的 GCN 利用消息传播(message propagation)来交换相邻节点之间的信息。这一过程可以在图的较大相邻范围内提取特征,其作用类似于卷积网络中的卷积层和池化层。由于该过程中不会有节点消失,因此基于节点的 GCN 扩展了感受野,并避免了局部位置信息出现损失。 这篇论文提出了新型模型 Graph-FCN 来解决语义分割问题。研究者使用深度卷积网络建模图,并首次用 GCN 方法解决图像语义分割任务。Graph-FCN 可以扩大感受野,同时避免局部位置信息出现损失。实验表明,Graph-FCN 的性能优于 FCN。 Graph-FCN 方法详解 GCN 旨在解决图结构数据集上的学习问题。图结构数据可看作是三元组 G(N, E, U),其中 N 表示图的节点集合,即 |N| ∗ S 矩阵(|N| 表示图节点数量,S 表示节点标注向量的维度)。E 是图的边集合。U 对应图特征,由于本研究涉及任务与 U 无关,因此本研究不讨论 U。 与欧几里德空间中的数据表示不同,矩阵 N 和边 E 并非独特表示。矩阵 N 与 E 对应,它们都按照节点的顺序排列。研究者使用监督学习方式训练模型。节点 n_j 表示图 j 中的节点集,t_j 表示节点集 n_j 的标注集。因此用于语义分割任务的图模型可公式化为:

研究者将交叉熵函数作为该模型的损失函数。T_r 表示训练集。 节点 在本研究提出的新模型中,节点标注由 FCN-16s 进行初始化。通过端到端训练后,FCN-16s 得到步幅为 16 和 32 的特征图,如下图 2 所示。对步幅为 16 的特征图执行因子为 2 的上采样可以获得与步幅为 32 的特征图一样的大小。(节点 j 的)标注 x_j 由这两个特征向量以及特征图中每个节点位置的级联进行初始化。该标注包含在局部感受野上提取到的特征。在训练过程中,研究者通过对原始标注图像执行池化操作来得到节点标签

图 2:节点标注初始化过程。节点标注由 FCN-16s 中两个层的级联进行初始化。 边 在图模型中,边和邻接矩阵相关。假设每个节点和其最邻近的 l 个节点相连,这意味着节点标注可以通过图神经网络中的边进行迁移。下图 3 中的示例描述了图神经网络中的感受野。假设 l 为 4,那么从相关距离的影响来看,我们需要用高斯核函数获得权重邻接矩阵 A。

图 3:当 l 为 4 时,双层 GCN 的感受野。这与卷积层不同。 使用 Graph-FCN 进行训练 在 Graph-FCN 中,FCN-16s 实现节点分类和图模型在小型特征图中的初始化。同时,双层 GCN 获取图中节点的分类结果。研究者分别计算这两部分输出的交叉熵损失。和 FCN-16s 模型一样,Graph-FCN 也以端到端模式进行训练。Graph-FCN 网络结构如下图 4 所示:

图 4:Graph-FCN 的结构示意图。该模型有两个输出和两个损失 L1 和 L2。它们共享卷积层提取特征的权重。L1 通过 output1 计算得到,L2 通过 output2 计算得到。通过最小化 L1 和 L2,FCN-16s 的性能得到了提升。 实验 研究者在 VOC2012 数据集上对模型进行测试,实验结果表明 Graph-FCN 的性能优于原始 FCN 模型。

表 1:Graph-FCN 和 FCN-16s 的性能对比情况。

图 5:图像语义分割结果。第二列是 Graph-FCN 的结果,第三列是 FCN-16s 的结果,第四列是 ground truth。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据集
    +关注

    关注

    4

    文章

    1230

    浏览量

    26047
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123915
  • 图卷积网络
    +关注

    关注

    0

    文章

    8

    浏览量

    1630

原文标题:另辟蹊径,中科院自动化所等首次用图卷积网络解决语义分割难题

文章出处:【微信号:tyutcsplab,微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像处理中尤其常见,因为图像本身就可以看作是由像
    的头像 发表于 11-19 18:15 1843次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b>神经<b class='flag-5'>网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    CNN算法简介 我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全连接层。下面是各层作用介绍: 卷积层:提取特征。“不全
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能
    发表于 10-29 06:08

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第一层卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    手机板 layout 走线跨分割问题

    初学习layout时,都在说信号线不可跨分割,但是在工作中为了成本不能跨分割似乎也非绝对。 在后续工作中,跨分割的基础都是相邻层有一面完整的GND参考,跨分割发生在相邻的另外一层。 但
    发表于 09-16 14:56

    北京迅为itop-3588开发板NPU例程测试deeplabv3 语义分割

    北京迅为itop-3588开发板NPU例程测试deeplabv3 语义分割
    的头像 发表于 07-22 15:51 819次阅读
    北京迅为itop-3588开发板NPU例程测试deeplabv3 <b class='flag-5'>语义</b><b class='flag-5'>分割</b>

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    【正点原子STM32MP257开发板试用】基于 DeepLab 模型的图像分割

    是谷歌团队提出的一种用于语义分割的深度学习模型,属于 DeepLab 系列模型的第三代版本。它在图像语义分割任务中表现优异,能够高效地捕获图像的多尺度上下文信息,并生成高分辨率的
    发表于 06-21 21:11

    自动驾驶感知系统中卷积神经网络原理的疑点分析

    背景 卷积神经网络(Convolutional Neural Networks, CNN)的核心技术主要包括以下几个方面:局部连接、权值共享、多卷积核以及池化。这些技术共同作用,使得CNN在图像
    的头像 发表于 04-07 09:15 646次阅读
    自动驾驶感知系统中<b class='flag-5'>卷积</b>神经<b class='flag-5'>网络</b>原理的疑点分析

    如何使用MATLAB实现一维时间卷积网络

    本文对一维卷积操作进行介绍,包括一维扩展卷积和一维因果卷积,以及 MATLAB 对一维卷积的支持情况。在最后通过一个实例演示如何在 MATLAB 中将一维
    的头像 发表于 03-07 09:15 1680次阅读
    如何使用MATLAB实现一维时间<b class='flag-5'>卷积</b><b class='flag-5'>网络</b>

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经
    的头像 发表于 02-12 15:53 1324次阅读

    SparseViT:以非语义为中心、参数高效的稀疏化视觉Transformer

    (IML)都遵循“语义分割主干网络”与“精心制作的手工制作非语义特征提取”相结合的设计,这种方法严重限制了模型在未知场景的伪影提取能力。 论文标题: Can We Get Rid
    的头像 发表于 01-15 09:30 823次阅读
    SparseViT:以非<b class='flag-5'>语义</b>为中心、参数高效的稀疏化视觉Transformer

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    问题,当步幅为2时,添加了深度卷积和逐点卷积来整合不同的信道信息(图 a)。GhostNet 的作者提出了一种新的 Ghost 模块,该模块可以更少的参数生成更多的特征图,以提高网络
    发表于 12-19 14:33