0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2012年以来AI算法消耗算力的情况

倩倩 来源:量子位 2020-01-18 16:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

今天OpenAI更新了AI计算量报告,分析了自2012年以来AI算法消耗算力的情况。

根据对实际数据的拟合,OpenAI得出结论:AI计算量每年增长10倍。从AlexNet到AlphaGo Zero,最先进AI模型对计算量的需求已经增长了30万倍。

英伟达黄仁勋一直在强调摩尔定律已死,就是没死也顶不住如此爆炸式的算力需求啊。

至于为何发布AI计算量报告?OpenAI说,是为了用计算量这种可以简单量化的指标来衡量AI的发展进程,另外两个因素算法创新和数据难以估计。

每年增长10倍

OpenAI根据这些年的实际数据进行拟合,发现最先进AI模型的计算量每3.4个月翻一番,也就是每年增长10倍,比摩尔定律2年增长一倍快得多。

上图中的纵坐标单位是PetaFLOPS×天(以下简写为pfs-day),一个pfs-day是以每秒执行1015次浮点运算的速度计算一天,或者说总共执行大约1020次浮点运算。

需要注意的是,上图使用的是对数坐标,因此AlphaGoZero比AlexNet的运算量多了5个数量级。

从2012年至今,按照摩尔定律,芯片算力只增长了7倍,而在这7年间AI对算力的需求增长了30万倍。硬件厂商是否感觉压力山大?

OpenAI还分析了更早期的数据,从第一个神经网络感知器(perceptron)诞生到2012年AI技术爆发前夕的状况。

在之前的几十年中,AI计算量的增长速度基本和摩尔定律是同步的,2012年成为AI两个时期的分水岭。

(注:OpenAI原报告引用18个月作为摩尔定律的翻倍时间,之后修正为2年。)

AI硬件的4个时代

对算力的爆炸式需求也催生了专门用于AI运算的硬件,从1959年至今,AI硬件经历了4个不同的时期。

2012年之前:使用GPU进行机器学习运算并不常见,因此这部分的数据比较难准确估计。

2012年至2014年:在多个GPU上进行训练的设备并不常见,大多数使用算力为1~2 TFLOPS的1到8个GPU,计算量为0.001~0.1 pfs-day。

2014年至2016年:开始大规模使用10~100个GPU(每个5~10 TFLOPS)进行训练,总计算量为0.1-10 pfs-day。数据并行的边际效益递减,让更大的训练量受到限制。

2016年至2017年:更大的算法并行性(更大的batch size、架构搜索和专家迭代)以及专用硬件(TPU和更快的连接),极大地放宽了并行计算的限制。

未来还会高速增长吗?

OpenAI认为,我们有很多理由相信,AI计算量快速增长的需求还会继续保持下去。但是我们不必太过担心算力不够。

首先,越来越多的公司开发AI专用芯片,这些芯片会在一两年内大幅提高单位功率或单位价格的算力(FLOPS/W或FLOPS/$)。另一方面并行计算也会成为主流,没有太强的芯片还可以堆数量。

其次,并行计算也是解决大规模运算的一个有效方法,未来也会有并行算法创新,比如体系结构搜索和大规模并行SGD等。

但是,物理规律限制芯片效率,成本将限制并行计算。

如今训练一个最大模型需要的硬件购置成本高达几百万美元,不是每个企业都可以像英伟达那样,用512个V100花费10天训练一个模型的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 摩尔定律
    +关注

    关注

    4

    文章

    640

    浏览量

    80608
  • AI算法
    +关注

    关注

    0

    文章

    270

    浏览量

    13056
  • OpenAI
    +关注

    关注

    9

    文章

    1238

    浏览量

    9811
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    华为发布AI容器技术Flex:ai平均利用率提升30%

    电子发烧友网综合报道 202511月21日,在上海举办的“2025 AI容器应用落地与发展论坛”上,华为正式发布并开源了创新AI容器技术Flex:ai,为解决算
    的头像 发表于 11-26 08:31 7106次阅读

    湘军,让变成生产

    脑极体
    发布于 :2025年11月25日 22:56:58

    国产AI芯片真能扛住“内卷”?海思昇腾的这波操作藏了多少细节?

    最近行业都在说“AI的命门”,但国产芯片真的能接住这波需求吗? 前阵子接触到海思昇腾910B,实测下来有点超出预期——7nm工艺下
    发表于 10-27 13:12

    什么是AI模组?

    未来,腾视科技将继续深耕AI模组领域,全力推动AI边缘计算行业的深度发展。随着AI技术的不断演进和物联网应用的持续拓展,腾视科技的
    的头像 发表于 09-19 15:26 1145次阅读
    什么是<b class='flag-5'>AI</b><b class='flag-5'>算</b><b class='flag-5'>力</b>模组?

    什么是AI模组?

    未来,腾视科技将继续深耕AI模组领域,全力推动AI边缘计算行业的深度发展。随着AI技术的不断演进和物联网应用的持续拓展,腾视科技的
    的头像 发表于 09-19 15:25 427次阅读
    什么是<b class='flag-5'>AI</b><b class='flag-5'>算</b><b class='flag-5'>力</b>模组?

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的未来:提升还是智力

    持续发展体现在: 1、收益递减 大模型的基础的需要极大的,这首先源于昂贵的高性能AI芯片,然后是宝贵的电力、水等与环境相关的资源。 收益递减体现在: ①模型大小 ②训练数据量 ③训练算法
    发表于 09-14 14:04

    一文看懂AI集群

    最近这几年,AI浪潮席卷全球,成为整个社会的关注焦点。大家在讨论AI的时候,经常会提到AI集群。AI
    的头像 发表于 07-23 12:18 958次阅读
    一文看懂<b class='flag-5'>AI</b><b class='flag-5'>算</b><b class='flag-5'>力</b>集群

    软通智完成超亿级A轮融资,加速AI产业布局

    机构跟投。 自2024成立以来,软通智积极参与全国一体化网建设,以技术驱动
    的头像 发表于 06-18 15:37 429次阅读

    DeepSeek推动AI需求:800G光模块的关键作用

    随着人工智能技术的飞速发展,AI需求正以前所未有的速度增长。DeepSeek等大模型的训练与推理任务对的需求持续攀升,直接推动了服务
    发表于 03-25 12:00

    远东股份:助力解锁AI可持续未来

    。 记者调查发现,预计到2027,整个人工智能行业每年的耗电量将达85至134太瓦时,相当于一座大型水电站一的发电总量。数据中心作为AI
    的头像 发表于 03-21 16:52 488次阅读
    远东股份:助力解锁<b class='flag-5'>AI</b><b class='flag-5'>算</b><b class='flag-5'>力</b>可持续未来

    接棒,慧荣科技以主控技术突破AI存储极限

      过去的AI大模型通常走大砖飞的路子,通过叠加更强的,来推动AI大模型的发展。但DeepSeek通过
    的头像 发表于 03-19 01:29 2339次阅读
    存<b class='flag-5'>力</b>接棒<b class='flag-5'>算</b><b class='flag-5'>力</b>,慧荣科技以主控技术突破<b class='flag-5'>AI</b>存储极限

    DeepSeek驱动AI市场升温,智中心利用率望提升

    据多位业内人士透露,DeepSeek在业界的迅速部署与应用,为AI市场带来了新的热潮。自年后开工两周以来
    的头像 发表于 02-19 14:00 705次阅读

    中心的如何衡量?

    作为当下科技发展的重要基础设施,其的衡量关乎其能否高效支撑人工智能、大数据分析等智能应用的运行。以下是对智中心算衡量的详细阐述:一、
    的头像 发表于 01-16 14:03 4185次阅读
    <b class='flag-5'>算</b>智<b class='flag-5'>算</b>中心的<b class='flag-5'>算</b><b class='flag-5'>力</b>如何衡量?

    企业AI租赁模式的好处

    构建和维护一个高效、可扩展的AI基础设施,不仅需要巨额的初期投资,还涉及复杂的运维管理和持续的技术升级。而AI
    的头像 发表于 12-24 10:49 1656次阅读