0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI赌神赢的背后,只是8天的训练

mK5P_AItists 来源:YXQ 2019-08-15 09:06 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

2017年年初,Brain vs AI的德州扑克人机大战在卡耐基梅隆大学(CMU)落幕,由4名人类职业玩家组成的人类大脑不敌人工智能程序Libratus。

获胜后人类还遭到了Libratus的无情嘲讽。

但是那时候Libratus还只是个只能在1V1局里称霸的超级玩家,要说人类最喜欢的6人局这样的“大场面”,当时的Libratus还没有拿到入场券。

而就在昨天,Facebook与CMU学Noam Brown、Tuomas Sandholm的最新研究成果——Pluribus,就在人类最常见的无限制德州扑克6人局里,战胜了人类顶尖选手。

跟还是不跟?高手之间的对决

Darren Elias(1986年11月18日出生)是一名美国职业扑克玩家,曾获得四项世界扑克巡回赛冠军。

在他与Pluribus的对决过程中,Darren Elias从来没有遇到过如此不害怕的对手。

一个有经验的扑克玩家,当有两个J(一个面朝上,另一个藏起来,一手既不好也不坏)时,都会谨慎行事。但是Elias的对手看起来好像不知道该怎么做。即使当Elias决定虚张声势(bluff),下注时看起来很有信心,而他的对手似乎在鼓励他继续!好像一点都没有被吓到。

最后,Elias的虚张声势没有起作用,他输了。

Elias

正如埃利亚斯先生意识到的,Pluribus知道什么时候该虚张声势,也知道别人在虚张声势,还知道什么时候该改变自己的行为,这样其他玩家就无法确定自己的策略。32岁 Elias先生说: 它确实做了一些人类很难做到的事情。

赢的背后,只是8天的训练

之前AI和人玩游戏,要么是双人游戏,如国际象棋、跳棋等,要么就是双方之间的零和博弈(一方赢一方输),AI可以在游戏中找到Nash equilibrium strategy(纳什平衡)来保证自己不会输。

关于Nash equilibrium strategy(纳什平衡)属于博弈论范畴(注:纳什证明了,如果允许混合策略,那么任何一个博弈,只要参与者数量是有限的、参与者可以选择的纯策略也是有限的,那么这个博弈至少有一个纳什均衡)。

以经典的“石头剪刀布”游戏为例,AI可以在游戏中找到对方的弱点和常出的手势进行学习,以达到最终的胜利,而多人扑克意味着玩家数量的增多,在更复杂的游戏中,AI难以确定如何与纳什均衡相抗衡;采用固定策略不能很快观察到的对手的策略倾向,而且需要监控到多个玩家在游戏中策略的转变,这对于AI多人扑克博弈来说,是一项挑战。

鉴于多人游戏,如果学习多个玩家的出牌习惯等特征的训练数据集成本过大,这里Pluribus采用的策略是自己与自己博弈,不使用人类对手的数据作为模型训练的输入。在开始时,随机的选择玩法,通过不断的训练来提升自己的性能,这里采用的博弈策略是改良版本的迭代的蒙特卡洛CFR(MCCFR),通过自我博弈,左右手互博,自己制定了一个blueprint strategy(蓝图策略),最后对每个可能的状况进行概率分布统计,通过搜索决策树来决定下一步的行为,是叫牌还是出牌。

CFR是一种迭代的自我游戏算法,AI从完全随机游戏开始,然后通过学习击败早期版本的自己逐渐改进。

在算法的每次迭代中,MCCFR指定一个玩家作为其当前策略在迭代中更新的标记。在迭代开始时,MCCFR根据当前所有玩家的策略(最初是完全随机的)模拟一手扑克牌。一旦模拟完成,人工智能就会回顾每一个玩家做出的决定,然后通过选择其他可用的行动来预测这个决定的好坏程度。

Pluribus玩家博弈树

在解决不完全信息博弈中搜索的问题,Pluribus跟踪每一手,根据其策略达到目前状况的可能性。不管Pluribus实际上握着的牌,它首先会计算如何使用可能的每一手,谨慎地平衡所有的策略,以保持对于对手的不可预测性。

Pluribus 中的实时搜索

扑克以外的事

之前在1V1局中大胜人类的Libratus后来去五角大楼上班去了,国防部认为这种策略型人工智能或许可以帮助他们进行战略的制定。

负责 Pluribus 项目的 研究员Noam Brown说:“Pluribus的技术可以用于华尔街交易、拍卖、政治谈判和网络安全这些活动中,这些活动就像扑克一样,涉及隐藏信息,因为你并不总是知道真实世界的状态。”

尽管像谷歌这样的公司,有着“Don't be evil”的信条,但是,不可避免的是这样能够理解人类策略的人工智能,还是会引发大众对于人工智能的某种恐惧,或者说,如果这样的人工智能被运用到军事决策中,将会带来多严重的后果?

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    89

    文章

    38104

    浏览量

    296629
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236

原文标题:AI赌神升级!无惧bluff,6人局德扑完胜世界冠军,训练只用了8天

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    RA8P1部署ai模型指南:从训练模型到部署 | 本周六

    在嵌入式边缘AI中,如何把“训练好的模型”稳定地“跑在板子上”,决定了项目能否落地。我们带你基于RA8P1平台,跑通从数据准备、模型训练、量化转换,到工程部署的整个流程,帮助你快速实现
    的头像 发表于 11-20 18:06 1639次阅读
    RA<b class='flag-5'>8</b>P1部署<b class='flag-5'>ai</b>模型指南:从<b class='flag-5'>训练</b>模型到部署 | 本周六

    800G 光模块:AI 算力洪流的 “超级传动轴”

    AI 大模型几小时内完成训练、自动驾驶实时处理海量数据,这些场景背后,800G 光模块是不可或缺的高速传输底座。它不只是 “网线升级品”,更是支撑全球数字基础设施运转的核心组件,而
    的头像 发表于 10-30 16:54 553次阅读

    在K230中,如何使用AI Demo中的object_detect_yolov8n,YOLOV8多目标检测模型?

    在K230的AI开发教程文档中,可以看到有源码的AI Demo,其中包括yolov8n模型,在仓库里可以看到源码 我想请问各位大佬,如何使用这个程序?如何更改程序,替换为我自己的数据集和
    发表于 08-07 06:48

    兆芯携手联想开在WAIC 2025展示AI公文写作神器

    2025世界人工智能大会正在火热召开。本届大会,兆芯携手联想开展示了一套AI公文写作神器,基于开AIPC终端,搭载定制AI算力卡,推理、数据完全本地化,内置基于海量权威语料
    的头像 发表于 08-04 10:01 870次阅读

    ai_cube训练模型最后部署失败是什么原因?

    ai_cube训练模型最后部署失败是什么原因?文件保存路径里也没有中文 查看AICube/AI_Cube.log,看看报什么错?
    发表于 07-30 08:15

    海思SD3403边缘计算AI数据训练概述

    AI数据训练:基于用户特定应用场景,用户采集照片或视频,通过AI数据训练工程师**(用户公司****员工)** ,进行特征标定后,将标定好的训练
    发表于 04-28 11:11

    Deepseek海思SD3403边缘计算AI产品系统

    海思SD3403边缘计算AI框架,提供了一套开放式AI训练产品工具包,解决客户低成本AI系统,针对差异化AI 应用场景,自己采集样本数据,进
    发表于 04-28 11:05

    首创开源架构,AI开发套件让端侧AI模型接入得心应手

    ,联发科带来了全面升级的AI开发套件2.0,在模型库规模、架构开放程度、前沿端侧AI技术支持和端侧LoRA训练落地等方面均迎来全面跃迁,为开发者提供了更全面、更开放、更强大的端侧
    发表于 04-13 19:52

    利用RAKsmart服务器托管AI模型训练的优势

    AI模型训练需要强大的计算资源、高效的存储和稳定的网络支持,这对服务器的性能提出了较高要求。而RAKsmart服务器凭借其核心优势,成为托管AI模型训练的理想选择。下面,
    的头像 发表于 03-18 10:08 524次阅读

    摩尔线程GPU原生FP8计算助力AI训练

    近日,摩尔线程正式开源MT-MegatronLM与MT-TransformerEngine两大AI框架。通过深度融合FP8混合训练策略和高性能算子库,这两大框架在国产全功能GPU上实现了高效的混合
    的头像 发表于 03-17 17:05 1214次阅读
    摩尔线程GPU原生FP<b class='flag-5'>8</b>计算助力<b class='flag-5'>AI</b><b class='flag-5'>训练</b>

    训练好的ai模型导入cubemx不成功怎么处理?

    训练好的ai模型导入cubemx不成功咋办,试了好几个模型压缩了也不行,ram占用过大,有无解决方案?
    发表于 03-11 07:18

    AI Cube进行yolov8n模型训练,创建项目目标检测时显示数据集目录下存在除标注和图片外的其他目录如何处理?

    AI Cube进行yolov8n模型训练 创建项目目标检测时显示数据集目录下存在除标注和图片外的其他目录怎么解决
    发表于 02-08 06:21

    FP8在大模型训练中的应用

    越来越多的技术团队开始使用 FP8 进行大模型训练,这主要因为 FP8 有很多技术优势。比如在新一代的 GPU 上,FP8 相对于 BF16 对矩阵乘算子这样的计算密集型算子,NVID
    的头像 发表于 01-23 09:39 1897次阅读
    FP<b class='flag-5'>8</b>在大模型<b class='flag-5'>训练</b>中的应用

    玑 9400拿下AI性能榜冠军,最强NPU引领手机AI应用变革

    近两年, AI手机端侧AI应用和AI体验开始进入“超级加速”的时期,层出不穷的技术创新背后其实更离不开手机芯片的核心支持。在这股浪潮中,联发科
    的头像 发表于 12-30 20:09 1111次阅读
    <b class='flag-5'>天</b>玑 9400拿下<b class='flag-5'>AI</b>性能榜冠军,最强NPU引领手机<b class='flag-5'>AI</b>应用变革

    GPU是如何训练AI大模型的

    AI模型的训练过程中,大量的计算工作集中在矩阵乘法、向量加法和激活函数等运算上。这些运算正是GPU所擅长的。接下来,AI部落小编带您了解GPU是如何训练
    的头像 发表于 12-19 17:54 1325次阅读