完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
该系统将构成一个全网状环形结构。当系统正面的互连从左向右或水平传输时,则系统背面的互连则是从上向下传输,从而构成一个完整的网格。...
机器之间通信的增加和指挥控制过程的自主化,可能会带来作战中心硬件和人员配置的变化,这使人类作战人员能够聚焦认知任务,如评估和完善潜在的行动方案。...
计算机视觉技术是一种典型的交叉学科研究领域,包含了生物、心理,物理,工程,数学,计算机科学等领域,存在与其他许多学科或研究方向之间相互渗透、相互支撑的关系。...
机器学习其实就是使机器具有学习的能力, 从而不断获得新知识以及新技能得到有效提升.机器学习在三维环境重建中一直是重点研究对象。...
一阶算法在整个卷积网络中进行特征提取、目标分类和位置回归,通过一次反向计算得到目标位置和类别,在识别精度稍弱于两阶段目标检测算法的前提下,速度有了极大的提升。...
本节主要将近年来基于候选区域的目标检测算法分为五个部分进行综述,首先介绍了Faster R-CNN[14]框架的发展历程,然后综述了对Faster R-CNN算法的四个重要组成部分(特征提取网络、ROI Pooling层、RPN、NMS算法)的改进研究....
机器学习领域中,有些模型非常有效,但我们并不能完全确定其原因。相反,一些相对容易理解的研究领域则在实践中适用性有限。本文基于机器学习的效用和理论理解,探讨各个子领域的进展。...
abel smoothing将hard label转变成soft label,使网络优化更加平滑。标签平滑是用于深度神经网络(DNN)的有效正则化工具,该工具通过在均匀分布和hard标签之间应用加权平均值来生成soft标签。...
本文将讨论目标检测的基本方法(穷尽搜索、R-CNN、Fast R-CNN和Faster R-CNN),并尝试理解每个模型的技术细节。为了让经验水平各不相同的读者都能够理解,文章不会使用任何公式来进行讲解。...
ConvNeXt V2 最终在各种识别基准上的性能,包括 ImageNet 分类、COCO 检测和 ADE20K 分割任务上均取得了极具竞争力的结果,其中最小的模型仅 3.7M 参数可获取 76.7% top-1 准确率,而最大的模型约 650M 参数则能达到 88.9% 准确率。...
如果把声波视作一个连续函数,它可以唯一表示为一堆三角函数相叠加。不过在叠加过程中,每个三角函数的加权系数不同,有的要加高一些、有的要压低一些,有的甚至不加。...
针对垃圾图像分类问题, 构建了一种基于卷 积神经网络的算法 GCNet, 该网络通过构建注意力机 制和特征融合机制, 能够有效地提取图像特征、降低 类别差异性带来的影响。...
人工智能不仅在设计环节找到了一席之地,在芯片的制造环节也已经发挥价值。人工智能在半导体行业具有巨大的价值潜力,晶圆厂和OSAT纷纷加大产能建设,并评估将人工智能和机器学习介入芯片制造,能否带来更大的效益。...
将该框架推广到广义零样本学习,并针对域偏置问题,提出了- -种基于语义知识的域检测方法。利用域检测方法可以先将未见类别和已见类别进行区分,然后用两个模型分别在两个域进行分类,从而有效缓解域偏置问题。...
低秩近似算法在中小型网络模型上,取得了很不错的效果,但其超参数量与网络层数呈线性变化趋势,随着网络层数的增加与模型复杂度的提升,其搜索空间会急剧增大,目前主要是学术界在研究,工业界应用不多。...
对于大多数形式的图像分割,目标都是将图像二值化为感兴趣的区域。这个本文介绍方法的目标也是这样的。首先,大致确定感兴趣的对象在哪里。...
R-CNN在训练和测试是需要对每一个图像中每一个proposal进行一遍CNN前向特征提取,如果是2000个propsal,需要2000次前向CNN特征提取。但SPP-net只需要进行一次前向CNN特征提取。...
本文会带您完成相关的软硬件环境设定,并操作 Teachable Machine 透过相机模块来搜集照片、训练神经网络,最后导出档案给 Arduino 执行实时影像(灰阶)分类!...