0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

旷视斩获6冠 彰显深度学习算法引擎优势

旷视MEGVII 来源:YXQ 2019-06-22 10:58 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

当地时间6月16日,全球计算机视觉顶会 CVPR 2019 在美国长滩拉开帷幕,超过9200位相关人士共赴盛会,推进计算机视觉技术的交流与落地。旷视通过 Oral、Poster、Workshop、Demo、Booth 等形式,同世界分享在计算机视觉理论与应用领域的最新进展。值得一提的是,在 CVPR 2019 的3项挑战赛中,旷视最终击败 Facebook、通用动力、戴姆勒等国内外一线科技巨头/知名高校,共计斩获6项世界冠军!

持续创新

Brain++拓展AI认知边界

人工智能不能闭门造车。作为以算法为基因的公司,旷视自诞生之日起便一直积极参与计算机视觉在全球范围内的学术交流,一方面是为了与世界分享自己的研究成果,另一方面也是为了吸取全球的智慧,研发最好的技术来助力世界发展,创造社会价值。

展会现场

此行,旷视共参加 CVPR 2019 WAD(Workshop on Autonomous Driving

)、CVPR 2019 FGVC(Workshop on Fine-Grained Visual Categorization

)、CVPR 2019 NTIRE(New Trends in Image Restoration and Enhancement workshop)3项挑战赛,拿下6项冠军,涵盖自动驾驶、新零售、智能手机、3D 等众多领域,其背后起支撑作用的是旷视深度学习框架 Brain++。这是一套由旷视研究院自主原创的算法引擎,致力于从云、端、芯三个方面全面赋能物理世界,以实现对世界的感知、控制、优化。Brain++ 不仅助力旷视拿下世界冠军,还将推动智能汽车、商品识别、手机影像处理、智慧农业等应用领域的进步发展。

旷视斩获 CVPR 2019 挑战赛6项世界冠军

大会现场,挑战赛主办方宣布比赛成绩,并向冠军队伍颁发获奖证书;随后,旷视相关的参赛人员通过一张张 Slides、一场场 Talks、一张张 Posters 向与会人员分享了夺冠背后的技术方法,以及冠军之路上满满的收获。

今年是旷视自成立以来连续第5年参加 CVPR,在谈到参加这种顶级学术会议对公司战略意义的时候,旷视首席科学家、旷视研究院院长孙剑表示:

“一流的人才往往希望在一个开放的环境中成长。发表论文、参加学术会议,其实是有人对你的工作鼓掌,激励你继续前行。

旷视研究院最宝贵的财产是人才。如何吸引、培养、保留人才是一个组织健康和高速发展最关键的。

我的工作第一优先级是打造一个好的研发环境,让公司赢,让我们赢,让每个人赢。因为我始终相信两点:中国不缺乏聪明人,中国有世界上最好的发展机会。我们就是要把一帮聪明人聚起来,齐心协力,贯彻‘发展就是硬道理’。”

冠军之路,满是收获

CVPR 2019 WAD nuScenes 3D Detection Challenge

nuScenes 3D Detection Challenge冠军奖牌

CVPR 2019 WAD 是自动驾驶领域的权威比赛,其中 nuScenes 比赛方向是 3D detection,旨在通过模型分析 3D 激光雷达/相机数据,赋予自动驾驶汽车侦测物体的能力,保障行驶安全。

nuScenes 不仅需要同时识别10类物体(相比 KITTI 只需预测单个类别),还加入了速度和属性的预测,而且需要解决严重的类别不均衡问题,因此任务难度大幅提高,因而也更具有实际意义。

比赛中,旷视设计了一个多尺度、多任务的模型,借助新型检测网络,结合均衡采样等策略,极大提高了模型的检测精度,尤其是在小物体上。由最终结果可知,相较于官方 Baseline 45.3%, 旷视的模型高出18个点,达到63.3%,比第二名也高出8.8个点, 击败一系列顶尖团队,一举夺魁。

CVPR 2019 WAD Detection/Tracking Domain Adaptation Challenge

Detection Domain Adaptation Challenge冠军奖牌

Detection Domain Adaptation Challenge 是 CVPR 2019 WAD 的另一项挑战赛,旨在对自动驾驶场景下的环境(二维图像信息)进行感知,今年的比赛主要解决领域自适应问题,即美国道路场景和中国道路场景的相互适应。

具体而言,即利用7万张美国道路场景数据进行训练,对近15万张中国道路场景进行测试,不允许使用任何标注测试数据,只允许使用 ImageNet 进行预训练。图像本身的不一致之外,不同天气、不同道路以及复杂的交通状况都给任务增加了额外挑战,同时也为实际使用提供了可能性。

旷视基于自身积累的检测算法之外,加之复现/使用的最前沿的检测算法(比如 NAS-FPN、Cascade RCNN),进而对 Cascade RCNN 做出一系列改进,使得网络在不同 IOU 阈值下的检测结果都有一定涨幅;同时,为了解决两个数据集之间数据分布不一致的问题,旷视还利用合并训练、AdaBN、Data Distillation 等技术手段,最终在测试集上高出第二名深兰科技1.7个点,同时在所有单类别上取得最高结果。

另外,在 Tracking Domain Adaptation Challenge 上,旷视使用 Online 方法进行多目标跟踪,即在高精度检测结果的基础上,使用 IOU Tracker 进行跟踪;跟踪过程中,改进和调试影响结果的多种因素,最终也在 Tracking 任务上取得第一。

CVPR 2019 FGVC iNaturalistHerbarium Challenge

FGVC 颁奖现场

CVPR 2019 FGVC 是细粒度识别领域最权威的赛事,iNaturalist Challenge 是此项领域的旗舰比赛,旨在让计算机自动识别物体的精细类别,它不仅要求识别1000多个品种的动、植物,还要识别其在不同发育期的状态;Herbarium Challenge 则要解决开花植物野牡丹科的物种分类问题,所采用的图像集仅包括保存于腊叶标本上的干标本图像。

除了大模型/大分辨率图图像进行训练、测试等常规操作外,旷视还集成最前沿细粒度技术成果(比如 Coarse-to-fine hierarchical classification、iSQRT、Class-Balanced Focal Loss 等),同时创造性提出“后验概率重校准”技术,即通过先验知识对模型输出的后验概率进行校准,极大提高拥有较少训练图像的长尾类别的识别准确率,两项比赛结果均高出第2名近1个点,一举夺魁。

在业务方面,商品识别、菜品识别、缺陷检测、生产线零件识别、车型/车辆识别等均是细粒度图像分析技术的应用,目前已应用于产品研发中。

在 iNaturalist 上,旷视击败了通用动力等顶尖团队;在 Herbarium 上,旷视击败了大连理工(上年冠军)、瑞典自然历史博物馆、Facebook。

CVPR 2019 NTIRE Real Image Denosing Challenge

Real Image Denosing Challenge 冠军奖牌

CVPR 2019 NTIRE Real Image Denosing Challenge 基于新近的智能手机图像降噪数据集 SIDD,它由很多真实的噪声图像及其相应的 ground truth 组成,且每幅图像都有以原始传感器数据(raw)和标准 RBG(sRGB)格式存储的两个版本。

图像降噪一直是旷视研究院“手机摄影超画质”的技术储备项目,自第一版原型诞生以后不断迭代;其中,针对原始传感器数据(raw)的图像降噪更是整个项目的基础技术。

这次比赛中,旷视研究院提出针对 raw 图像的基于 U-Net 框架的“拜尔阵列归一化与保列增广”方法。尽管不同输入图像间的数据格式存在差异,但是,为保持网络输入一致性,旷视精心设计了一种数据预处理方法,使得相同的网络工作应用到具有不同拜耳模式的输入上,从而在保证性能的前提下用更大的图像集合训练网络。

本次冠军算法已成功落地于 OPPO Reno 10 倍变焦版。OPPO Reno 10 倍变焦版搭载了基于旷视超画质技术研发的“超清夜景2.0”功能,能够为用户提供非同凡响的夜拍体验。这也是旷视超画质技术首次运用在大规模量产机型上。

价值创造驱动技术创新

做真正WORK的科研

人工智能自诞生之日起便已宣称了其改变世界的雄心。当图灵于1950年在论文《Computing Machinery and Intelligence》尾页画上句号的刹那,一个前所未有的属于人类的智能时代就此拉开序幕。

从 Marvin Minsky 于1966年对机器人模仿人类抓取物品的研究,到神经心理学家 David Marr 于80年代初创建的关于计算机视觉研究的理论框架;从手工特征设计到受生物视觉神经网络为启发而诞生的卷积网络(CNN),人类将机器智能从小说幻想带进了现实,为世界装上了明眸。

人工智能,其本质是造福人类,便利生活,所以能否为世界带来足够的价值是旷视关注的核心。通过深挖社会痛点,找出致病原因,旷视一直在寻找着让世界更美好的方法。

旷视成立早期便上线了自主原创的深度学习框架——Brain++。作为企业级的人工智能算法制造工厂,Brain++ 从底层有力支撑着旷视研究院整体的研究生产工作与旷视核心产品的工程化建设。这次6冠的胜利,即是上述算法和底层系统优越性的再次证明。

凭借强大的软硬件结合能力,旷视目前已在「个人设备大脑」、「城市大脑」和「供应链大脑」三个核心 AIoT 场景深度布局。在与行业龙头力量的联合下,旷视正在推进尖端技术方案的强垂直落地,为整个产业结构调整及商业变革激活引擎,积聚力量;与生态伙伴一起服务于数字化建设,用软硬结合的解决方案为客户提供闭环的商业价值,成为行业智能物联方案专家。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123923
  • 旷视科技
    +关注

    关注

    1

    文章

    154

    浏览量

    12050

原文标题:CVPR 2019 | 旷视斩获6冠,彰显深度学习算法引擎优势

文章出处:【微信号:megvii,微信公众号:旷视MEGVII】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    累计5000+分钟内容 二、课程优势 技术壁垒构建: 形成\"视觉算法+运动控制+深度学习\"的复合技术栈,建立差异化竞争优势 项目落地能力
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    高精度检测模型 持续更新:课程内容持续更新,已累计5000+分钟内容 二、课程优势 技术壁垒构建: 形成\"视觉算法+运动控制+深度学习\"的复合技术栈,建立差异化竞争
    发表于 12-03 13:50

    硬件加密引擎在保障数据安全方面有哪些优势呢?

    硬件加密引擎作为芯源半导体安全芯片的核心组件,在保障数据安全方面凭借硬件级的设计与优化,相比软件加密方案具有多维度优势,具体如下: 1. 加密运算效率更高,实时性更强 硬件级并行处理:硬件加密引擎
    发表于 11-17 06:47

    入选2025北京人工智能治理案例集

    近日,在2025国际前瞻人工智能安全与治理大会上,由北京人工智能产业联盟编制的《人工智能治理案例集》正式发布。自主研发的统一生物特征安全管理方案凭借其在生物特征识别数据安全与隐私合规方面的创新实践,成功入选该案例集,为行业提供了可参考的治理范例。
    的头像 发表于 11-11 17:56 1224次阅读

    借助大模型与智能体推动算法落地

    当下,AI技术繁荣无比,但无数企业却陷入“叫好不叫座”的困境:算法模型很先进,但一到真实的行业场景中就“水土不服”。问题究竟出在哪?大模型和智能体的兴起,又为我们提供了怎样的新解题思路?本文将深入探讨算法落地的核心痛点,并阐述我们如何借力新技术,打造出真正解决问题的产品。
    的头像 发表于 10-11 14:04 331次阅读

    国家发展改革委国际合作中心研修班走访

    近日,由国家发展改革委国际合作中心承办的“‘一带一路’国家数字经济发展能力建设研修班”和“发展中国家应对气候变化经验共享研修班”走访了。来自14个国家的50余名政府官员参加了研修班活动。
    的头像 发表于 09-09 16:11 852次阅读

    信而泰×DeepSeek:AI推理引擎驱动网络智能诊断迈向 “自愈”时代

    DeepSeek-R1:强大的AI推理引擎底座DeepSeek是由杭州深度求索人工智能基础技术研究有限公司开发的新一代AI大模型。其核心优势在于强大的推理引擎能力,融合了自然语言处理(
    发表于 07-16 15:29

    亮相2025上海世界移动通信大会

    此前,6月18日-20日,由GSMA主办的2025MWC(世界移动通信大会)在上海新国际博览中心盛大举行。作为亚洲通信与科技领域的年度盛事,本届大会汇聚了全球顶尖的科技企业、行业领袖与政策制定者
    的头像 发表于 06-23 17:47 1118次阅读

    携手曙光云与中科天玑合作打造城市智能空间

    近日,北京科技有限公司(以下简称“”)、曙光云计算集团股份有限公司(以下简称“曙光云”)与中科天玑数据科技股份有限公司(以下简称“中科天玑”)在北京举行了合作会谈,三方将在互联
    的头像 发表于 03-20 09:13 1082次阅读

    发布AIS算法生产平台V5.0版本

    近日,正式发布自研的算法生产平台AIS(AI Service)5.0版!此次升级,包括接入DeepSeek等三大核心能力重磅亮相,助力企业AI生产力再跃升!
    的头像 发表于 03-12 17:18 1344次阅读

    运动猿入选2024年度智能体育典型案例

    2025年3月3日,工业和信息化部、国家体育总局联合公布了“2024年度智能体育典型案例”名单,“运动猿智能体育教育产品方案”成功入选,成为智能青少年体育产品方向的典型案例。此次获评是对
    的头像 发表于 03-10 10:04 844次阅读

    明远智睿SD2351核心板首发:四核A35+硬核AI引擎,赋能工业AIoT

    产线缺陷检测; 智慧交通:利用IVE引擎优化车牌识别算法,支持多路摄像头并行处理; 能源监控:双以太网实现冗余通信,结合安全引擎保障数据隐私。 企业优势: 技术首发:首家实现S
    发表于 02-20 14:11

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度学习的定义与发展
    的头像 发表于 02-12 15:15 1363次阅读

    AI自动图像标注工具SpeedDP将是数据标注行业发展的重要引擎

    利用AI模型训练打造的深度学习算法开发平台SpeedDP,就可以替代人工进行海量的图像数据标注。相比于人工,SpeedDP具有多个优势。更快熟练的人工标注一张简单
    的头像 发表于 01-02 17:53 1129次阅读
    AI自动图像标注工具SpeedDP将是数据标注行业发展的重要<b class='flag-5'>引擎</b>

    中标北京市大数据中心感知管理服务平台二期建设项目

    近日,成功中标北京市大数据中心感知管理服务平台(二期)建设项目,此次中标不仅是对技术实力和服务能力的认可,更标志着
    的头像 发表于 12-31 09:20 1185次阅读