NVIDIA在GTC 2019上发布了Jetson Nano开发套件,这是一款售价99美元的计算机,可供嵌入式设计人员、研究人员和DIY创客们使用,在紧凑、易用的平台上即可实现现代AI的强大功能,并具有完整的软件可编程性。本文将为您详细剖析Jetson Nano的强大性能和应用。
Jetson Nano采用四核64位ARM CPU和128核集成NVIDIA GPU,可提供472 GFLOPS的计算性能。它还包括4GB LPDDR4存储器,采用高效、低功耗封装,具有5W/10W功率模式和5V DC输入,如图1所示。
图1. Jetson Nano开发套件 (80x100mm), 99美元即可获得
Jetson Nano基于配备了图形加速的Ubuntu18.04操作系统,全新发布的JetPack 4.2 SDK为其提供了完整的桌面Linux环境支持,NVIDIA CUDA 工具包10.0,以及cuDNN 7.3和TensorRT等库。该SDK还包括本机安装的常用开源机器学习(ML)框架,如TensorFlow、PyTorch、Caffe、Keras和MXNet,以及计算机视觉和机器人开发的框架,如OpenCV和ROS。
它与这些框架和NVIDIA领先的AI平台完全兼容,可以轻松地将基于AI的推理工作负载部署到Jetson。Jetson Nano能为各种复杂的深度神经网络(DNN)模型提供实时计算机视觉和推理。这些功能支持多传感器自主机器人,以及具有智能边缘分析的物联网设备和先进的AI系统。开发人员甚至可以通过迁移学习,使用机器学习框架在Jetson Nano本地重新训练网络。
Jetson Nano开发套件的体积仅为80x100mm,具有四个高速USB 3.0端口、MIPI CSI-2摄像头连接器、HDMI 2.0和DisplayPort 1.3、千兆以太网、M.2 Key-E模块、MicroSD卡插槽和40引脚GPIO接头。端口和GPIO接头开箱即用,配备各种常用的外围设备、传感器和即用型项目,例如NVIDIA在GitHub上开源的3D可打印深度学习JetBot。
该开发套件可由移动的MicroSD卡启动,能够在任何具有SD卡适配器的PC上进行格式化和成像。它可以通过Micro USB端口或5V DC桶形插孔适配器充电,方便快捷。摄像头连接器兼容经济实惠的MIPI CSI传感器,包括基于Jetson生态系统合作伙伴提供的8MP IMX219的模块。它还支持Raspberry Pi Camera Module v2,其中包括JetPack中的驱动程序支持。表1展现了其关键规格。

表1. Jetson Nano开发套件技术规格
*表示了达到聚合吞吐量的最大并发流数。支持的视频编解码器:H.265,H.264,VP8,VP9(仅限VP9解码)
该套件围绕一个260引脚的SODIMM型系统级模块(SoM)构建,如图2所示。SoM包含处理器、内存和电源管理电路。 Jetson Nano计算模块尺寸为45x70mm,将于2019年6月开始发售,售价129美元(千片批量),供嵌入式设计人员集成到生产系统中。生产计算模块将包括16GB eMMC板载存储和增强I/O,以及PCIe Gen2 x4/x2/x1、MIPI DSI,附加GPIO和12个MIPI CSI-2通道,可连接多达三个x4摄像头或最多四个摄像头x4/x2配置中。Jetson的统一内存子系统在CPU、GPU和多媒体引擎之间共享,提供简化的ZeroCopy传感器摄取和高效处理流水线。
图2. 45x70mm Jetson Nano 计算模块配备260引脚边缘连接器
深度学习推理基准
Jetson Nano可以运行各种各样的高级网络,包括流行的机器学习框架的完整原生版本,如TensorFlow、PyTorch、Caffe / Caffe2、Keras和MXNet等。通过实现图像识别、对象检测和定位、姿势估计、语义分割、视频增强和智能分析等强大功能,这些网络可用于构建自主机器和复杂AI系统。
图3显示了在线提供的常用模型的推理基准测试结果。推理使用批量1和FP16精度,采用JetPack 4.2配备的NVIDIA TensorRT加速器库。Jetson Nano在许多场景中都具有实时性能,能够处理多个高清视频流。

图3. 采用Jetson Nano和TensorRT的各种深度学习推理网络的性能,使用FP16精度和批量1
表2提供了完整的结果,包括其他平台的性能,如Raspberry Pi 3、Intel Neural Compute Stick 2和Google Edge TPU Coral Dev Board:

表2. Jetson Nano、Raspberry Pi 3、Intel Neural Compute Stick 2和Google Edge TPU Coral Dev Board的推理性能结果。
由于内存容量有限,网络层不受支持或硬件/软件限制,DNR(未运行)结果频繁发生。固定功能神经网络加速器通常支持相对较窄的一组用例,硬件支持专用层操作,需要网络权重和激活以适应有限的片上高速缓存,以避免重大的数据传输损失。它们可能会回退到主机CPU上以运行硬件中不支持的层,并且可能依赖于支持减少的框架子集的模型编译器(例如,TFLite)。
Jetson Nano灵活的软件和完整的框架支持,以及内存容量和统一内存子系统使其能够运行多种不同的网络,达到全高清分辨率,包括同时在多个传感器流上的可变批量大小。这些基准测试代表了常用网络的一些示例,但用户可以通过加速性能为Jetson Nano部署各种模型和定制架构。而Jetson Nano不仅限于DNN推理。其CUDA架构可用于计算机视觉和数字信号处理(DSP),使用包括FFT、BLAS和LAPACK操作在内的算法,以及用户定义的CUDA内核。
多流视频分析
Jetson Nano可实时处理多达8个高清全动态视频流,并可部署在网络视频录像机(NVR)、智能摄像头和物联网网关的低功耗边缘智能视频分析平台中。NVIDIA的DeepStream SDK使用ZeroCopy和TensorRT来优化端到端的推理管道,以在边缘和本地服务器上实现最佳性能。
如下视频显示了Jetson Nano在8个1080p30流上同时执行物体检测,该过程基于ResNet的模型以全分辨率运行,吞吐量为每秒500万像素(MP/s)。
图4显示了使用Jetson Nano通过深度学习分析在千兆以太网上摄取和处理多达8个数字流的示例NVR架构。该系统可解码500 MP/s的H.264/H.265,并编码250 MP/s的H.264/H.265视频。

图4. 使用Jetson Nano和8x高清摄像头输入的参考NVR系统架构
JetBot
图5所示的NVIDIA JetBot是一个新的开源自主机器人套件,它提供了所有软件和硬件,计划以低于250美元的价格构建一个人工智能的深度学习机器人。硬件材料包括Jetson Nano、IMX219 800万像素摄像头、3D打印机箱、电池组、电机、I2C电机驱动器和配件。
图5. NVIDIAJetBot是基于Jetson Nano的开源深度学习自主机器人套件,能够以低于$250的价格构建而成
该项目通过Jupyter笔记本提供简单易学的示例,介绍通过编写Python代码来控制电机,训练JetBot检测障碍物,跟踪人和家居用品等物体,并训练JetBot跟踪地板周围的路径。可以通过扩展代码和使用AI框架为JetBot创建新功能。还有可用于JetBot的ROS节点,为希望集成基于ROS的应用程序,以及SLAM和高级路径规划等功能的用户提供ROS Melodic支持。包含JetBot ROS节点的GitHub存储库还包括Gazebo 3D机器人模拟器的模型,在部署到机器人之前可在虚拟环境中开发和测试新的AI行为。 Gazebo模拟器生成合成摄像头数据,并在Jetson Nano上运行。
Hello AI World
Hello AI World提供了一个很好的方式来开始使用Jetson并体验AI的强大功能。在短短几个小时内,您就可以使用JetPack SDK和NVIDIA TensorRT在Jetson Nano开发套件上进行一系列深度学习推理演示,并进行实时图像分类和对象检测(使用预训练模型)。本教程重点介绍与计算机视觉相关的网络,并包括使用实时摄像头。您还可以使用C++编写自己易于理解的识别程序。可用的深度学习ROS节点将这些识别、检测和分段推理功能与ROS结合在一起,可以集成到先进的机器人系统和平台中。这些实时推理节点可以轻松地放入现有的ROS应用程序中。图6展示了其中一些示例。
想要尝试训练自己模型的开发人员可以参照完整的“Two Days to a Demo”教程,该教程涵盖了图像分类、对象检测和带有迁移学习的语义分割模型的重新训练和定制。迁移学习可以精确调整特定数据集的模型权重,并避免必须从头开始训练模型。迁移学习能够在连接NVIDIA离散GPU的PC或云实例上高效执行,因为训练需要比推理更多的计算资源和时间。
图6. Hello AI World和Two Days to a Demo教程帮助用户快速部署用于计算机视觉的深度学习
然而,由于Jetson Nano可以运行TensorFlow、PyTorch和Caffe等完整的训练框架,因此它还能够为那些无法访问另一台专用训练机器,并且愿意为获得结果而等待的人提供迁移学习。表3显示了Two Days to a Demo教程的迁移学习的初步结果,该过程在Jetson Nano上使用PyTorch,在20万图像、22.5GB的 ImageNet子集上训练Alexnet和ResNet-18:

表3. 使用Jetson Nano和迁移学习在ImageNet数据集的样本——20万图像/22.5GB子集上重新训练图像分类网络的结果
时间戳指的是完成20万图像训练数据集所需的时间。对于可用结果和生产模型,分类网络可能需要2-5个时间戳,并且应该在离散GPU系统上训练以获得更多时间戳,直到它们达到最大准确度。但是,Jetson Nano可以让网络在一夜之间重新训练,在低成本平台上体验深度学习和人工智能。并非所有自定义数据集都与此处使用的22.5GB示例一样大。因此,图像/秒表示Jetson Nano的训练性能,此处还包括时间戳缩放与数据集的大小,训练批量大小和网络复杂性。其他型号也可以在Jetson Nano上重新训练,同时增加训练时间。
所有人可用的AI
Jetson Nano的计算性能、紧凑的体积和灵活性为开发人员带来了创建AI驱动设备和嵌入式系统的无限可能性。
-
英伟达
+关注
关注
23文章
4039浏览量
97655
原文标题:深度剖析 | Jetson Nano让AI计算无处不在
文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
BPI-AIM7 RK3588 AI与 Nvidia Jetson Nano 生态系统兼容的低功耗 AI 模块
BPI-AIM7 RK3588 AI与 Nvidia Jetson Nano 生态系统兼容的低功耗 AI 模块
瑞萨AI模型部署工具演示教程
Jetson平台核心组件BOM清单概览
Arm方案 基于Arm架构的边缘侧设备(树莓派或 NVIDIA Jetson Nano)上部署PyTorch模型
揭秘AI背后的核心技术
静电无处不在,对医药行业有哪些影响?
市场上主流的端侧AI MPU 大全
研华NVIDIA Jetson Orin Nano系统支持Super Mode
NVIDIA展望2025年AI的应用前景
NVIDIA发布高性价比生成式AI超级计算机
NVIDIA发布小巧高性价比的Jetson Orin Nano Super开发者套件
NVIDIA 推出高性价比的生成式 AI 超级计算机

Jetson Nano让AI计算无处不在
评论