0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

讨论深度神经网络、AI研究从大脑得到的启发

DPVg_AI_era 来源:lq 2019-05-13 09:11 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

深度学习教父、图灵奖得主Geoffrey Hinton今天在谷歌I/O大会的“炉边聊天”上发表演讲,讨论了深度神经网络AI研究从大脑得到的启发,以及真正理解大脑将如何改变许多领域。

最新一届图灵奖得主、多伦多大学教授兼谷歌大脑高级研究员 Geoffrey Hinton 今天在谷歌 I/O 开发者大会的炉边聊天上发表了演讲。

Hinton 讨论了神经网络的起源 —— 模拟生物神经元的数学函数层,以及 AI 有朝一日能够像人类一样进行推理的可行性和意义

Hinton 被称为 “人工智能教父”。过去 30 年里,Hinton 一直致力于解决 AI 面临的一些最大的挑战。除了在机器学习方面的开创性工作,Hinton 还撰写 (或与他人合作撰写) 了 200 多篇 AI 论文,包括 1986 年发表的一篇开创性的机器学习技术论文 —— 反向传播

Hinton 推广了深度神经网络这一概念,即以反向传播为基础的 AI 模型,其中包含相互连接的层,传输 “信号” 并调整连接的突触强度 (权重)。通过这种方式,神经网络可以从输入数据中提取特征,并学会做出预测

你只需要注意力机制!深度神经网络优化始于Transformers

深度神经网络得到大幅优化是在两年前,谷歌的研究人员发表一篇名为 “Attention Is all You Need” 的论文,提出名为 Transformers 的神经网络架构。

Transformers 抛弃了传统的 RNN/CNN 结构,从自然语言本身的特性出发,实现了完全基于注意力机制的 Transformer 机器翻译网络架构。

得益于动态计算权重的注意力机制,Transformers 在语言翻译任务中胜过了此前最先进的模型,同时大幅减少了训练所需的计算量

Hinton 承认,创新的速度甚至让他自己都感到惊讶。他说:“2012 年时,我没有想到仅仅 5 年之后,我们就能够使用相同的技术在多种语言之间进行翻译。”

尽管如此,Hinton 认为目前的 AI 和机器学习方法仍然存在局限性。他指出,大多数计算机视觉模型缺少反馈机制 —— 也就是说,它们不会尝试从更高层次的表示中重建数据。相反,它们试图通过改变权重来区别性地学习特性。

Hinton 说:“它们并没有在每一层的特征检测器上检查是否能够重建下面的数据。”

AI系统主要是无监督的,Hinton团队转向人类大脑启发

Hinton 和同事们最近开始转向人类视觉皮层寻找启发。Hinton 说,人类的视觉采用一种重建的方法来学习,事实证明,计算机视觉系统中的重建技术增强了它们抵抗对抗性攻击的能力。

“脑科学家们都同意这样的观点,即如果你的大脑皮层有两个区域处于感知通路 (perceptual pathway) 中,并且一个区域与另一个区域之间存在连接,那么总会有一个反向的通路。”Hinton 说。

需要说明的是,Hinton 认为神经科学家可以从 AI 研究人员那里学到很多东西。他认为未来的 AI 系统将主要是无监督的。无监督学习是机器学习的一个分支,可以从未标记、未分类的测试数据中提取知识 —— 在学习共性和对共性是否存在做出反应的能力方面,无监督学习的能力几乎达到人类水平。

Hinton 说:“如果你采用一个拥有数十亿参数的系统,对某个目标函数执行随机梯度下降,它的效果会比你想象的好得多…… 规模越大,效果越好。”

“这使得一种说法变得更加合理,即大脑计算某些目标函数的梯度,并根据梯度更新突触的强度。我们只需要弄清楚它是如何得到梯度的,以及目标函数是什么。”

这甚至可能解开梦的奥秘。“为什么我们根本不记得我们做过的梦呢?”Hinton 反问道。

他认为这可能与 “忘却”(unlearning) 有关,他在与人合著的一篇关于玻尔兹曼机的论文中解释了这一理论。玻尔兹曼机是由对称连接的、类似神经元的单元组成的网络,可以随机决定是 “on” 还是 “off”。Hinton 说,“它们发现…… 观察到的数据不那么令人惊讶”。

Hinton 说:“梦的意义可能在于,你把整个学习过程颠倒过来了。”

未来需要真正理解大脑的运作方式

Hinton 相信,这些知识可以改变许多领域,比如教育。例如,他预计教学课程将考虑人类生物化学,因此会更加个性化,更具针对性。

他说:“人们可能会认为,如果我们真正理解了大脑,我们应该能够改善教育等方面的状况,我认为这是会实现的。”

“如果我们最终能够了解大脑中正在发生什么,大脑是如何学习的,就能适应环境,从而更好地学习。”

但他也警告说,这一切都需要时间。就近期而言,Hinton 设想了智能助理的未来 —— 比如 Google Assistant 或亚马逊的 Alexa—— 它们可以与用户互动,并在日常生活中为用户提供引导。

Hinton 总结说:“再过几年,我不确定我们会学到多少东西。但如果你仔细观察,你会发现智能助理现在已经相当聪明了。一旦 AI 助理能够真正理解对话,它们就能和孩子们真正地交谈,并提供教育。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106799
  • 计算机视觉
    +关注

    关注

    9

    文章

    1714

    浏览量

    47454
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236

原文标题:AI教父Hinton:AI 系统将走向无监督,我们需要真正理解大脑

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统的神经网络相比,LNN旨在通过模拟大脑神经元之间的动态连接来处理信息,这种
    的头像 发表于 09-28 10:03 705次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    AI芯片不仅包括深度学细AI加速器,还有另外一个主要列别:类脑芯片。类脑芯片是模拟人脑神经网络架构的芯片。它结合微电子技术和新型神经形态器件
    发表于 09-17 16:43

    【「AI芯片:科技探索与AGI愿景」阅读体验】+化学或生物方法实现AI

    大脑的能效远高于目前的AI芯片 都知道计算机算的快,但是能取代大脑吗?肯定是不行的。大脑在处理复杂信息方面的能力是远超计算机的。是不可替代的。 2)细菌
    发表于 09-15 17:29

    【「AI芯片:科技探索与AGI愿景」阅读体验】+第二章 实现深度学习AI芯片的创新方法与架构

    上来先来几个专有名词: ANN:人工神经网络 SNN:脉冲神经网络DNN:深度神经网络 神经网络设计灵感都是来自人类的
    发表于 09-12 17:30

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“神经网络
    的头像 发表于 09-10 17:38 693次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b>学习<b class='flag-5'>神经网络</b>

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:AI硬件到AI湿件

    想到,除了研究大脑的抽象数学模型外,能否抛弃传统的芯片实现方式,以化学物质和生物组件、材料及相关现象来构建人工神经网络或提取其功能来用于AI处理,甚至直接用生物体来实现
    发表于 09-06 19:12

    【书籍评测活动NO.64】AI芯片,过去走向未来:《AI芯片:科技探索与AGI愿景》

    细胞内的生化反应模拟神经网络,真菌计算借助菌丝网络的分布式连接实现信息处理。这些技术跳出传统框架,直接通过生物体模仿大脑功能,有望实现质的飞跃。 应用创新 书中将科学发现划分为5种范式:
    发表于 07-28 13:54

    无刷电机小波神经网络转子位置检测方法的研究

    MATLAB/SIMULINK工具对该方法进行验证,实验结果表明该方法在全程速度下效果良好。 纯分享帖,点击下方附件免费获取完整资料~~~ *附件:无刷电机小波神经网络转子位置检测方法的研究.pdf
    发表于 06-25 13:06

    神经网络RAS在异步电机转速估计中的仿真研究

    ,在一定程度上扩展了转速估计范围。 纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:神经网络RAS在异步电机转速估计中的仿真研究.pdf【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权
    发表于 06-16 21:54

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1307次阅读

    BP神经网络深度学习的关系

    BP神经网络深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Ba
    的头像 发表于 02-12 15:15 1341次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,
    的头像 发表于 01-23 13:52 842次阅读

    王欣然教授团队提出基于二维材料的高效稀疏神经网络硬件方案

    。   稀疏性 (Sparsity) 是人脑中的神经突触的本征属性。在大脑发育过程中,超过一半的突触会以细粒度和非结构化的方式被剪枝 (Pruning),这是人脑具有高能效的关键因素。受此启发,稀疏
    的头像 发表于 01-13 10:41 878次阅读
    王欣然教授团队提出基于二维材料的高效稀疏<b class='flag-5'>神经网络</b>硬件方案

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的
    的头像 发表于 01-09 10:24 2249次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法