0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

周志华等人新书:《演化学习:理论和算法的进展》正式上线!

DPVg_AI_era 来源:lp 2019-04-19 10:16 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近日,由周志华教授、俞扬教授和钱超研究员共同完成的新书——《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》正式上线!堪称“宝藏级”新书,速来收藏。

爱逛知乎的小编在2019年4月13日,发现一直关注的俞扬教授发了一篇推文"致青春",点进去一看,发现了”宝藏“!

于是便立即联系了俞扬教授,询问是否可以将这份资源转发或者介绍给大家。俞教授也很爽快,没过多久就给了肯定的答复。

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》为原书名,因为微信公众号标题长度有限制,所以自行翻译成了中文:《演化学习:理论和算法的进展》。其中EvolutionaryLearning网上很多翻译成:进化学习。但我阅读了俞扬教授的原文,里面说是演化学习,所以这里为了统一,我还是标明演化学习。

中文仅供参考,若翻译有问题,还请指正,大家还是以英文为主。

本书是由周志华教授、俞扬教授和钱超研究员三位共同完成,这里简单介绍一下三位:

周志华,现任南京大学计算机科学与技术系主任、南京大学计算机软件新技术国家重点实验室常务副主任、机器学习与数据挖掘研究所(LAMDA)所长,校学术委员会委员。美国计算机学会(ACM)、美国科学促进会(AAAS)、国际人工智能学会(AAAI)、国际电气电子工程师学会(IEEE)、国际模式识别学会(IAPR)、国际工程技术学会(IET/IEE)、中国计算机学会(CCF)、中国人工智能学会(CAAI)等学会的会士(Fellow),欧洲科学院外籍院士。南京市政府人工智能产业顾问、证监会科技监管专家咨询委员会委员、江苏省政协委员、江苏省青联副主席等。

主要从事人工智能、机器学习、数据挖掘等领域的研究工作。主持多项科研课题,出版《机器学习》(2016)与《EnsembleMethods:FoundationsandAlgorithms》(2012),在一流国际期刊和顶级国际会议发表论文百余篇,被引用三万余次。经常担任NIPS、ICML、AAAI、IJCAI、KDD等重要国际学术会议的领域主席。担任中国计算机学会常务理事、人工智能专业委员会主任,中国人工智能学会常务理事,江苏省计算机学会副理事长,江苏省人工智能学会理事长,IEEE南京分部副主席。

周志华教授个人信息节选自:

http://cs.nju.edu.cn/zhouzh/zhouzh.files/resume_cn.htm

俞扬,博士,南京大学副教授,博士生导师。主要研究领域为人工智能、机器学习、强化学习。2011年8月加入南京大学计算机科学与技术系、机器学习与数据挖掘研究所(LAMDA)从事教学与科研工作。

曾获2013年全国优秀博士学位论文奖、2011年中国计算机学会优秀博士学位论文奖。发表论文40余篇,包括多篇ArtificialIntelligence、IJCAI、AAAI、NIPS、KDD等人工智能、机器学习和数据挖掘国际顶级期刊和顶级会议论文。入选2018年IEEEIntelligentSystems杂志评选的AI's10toWatch,获2018PAKDDEarlyCareerAward、2017年江苏省计算机学会青年科技奖。共同发起并主办了亚洲强化学习系列研讨会(AWRL)、中国演化计算与学习系列研讨会(ECOLE),任人工智能领域国际顶级会议IJCAI'18领域主席、ICPR'18领域主席、ACML'17领域主席,任IEEE计算智能协会数据挖掘与大数据分析技术委员会委员、中国人工智能学会机器学习专委会委员、中国计算机学会人工智能与模式识别专委会委员,ArtificialIntelligence、IJCAI、AAAI、KDD、ICML、NIPS、CVPR、ICCV等多个一流期刊的评审人和会议的程序委员。

俞扬教授个人信息节选自:

http://lamda.nju.edu.cn/yuy/cv_ch.ashx

钱超是中国科学技术大学副研究员。他的研究兴趣是人工智能,演化计算和机器学习。他在领先的国际期刊和会议论文集上发表了20多篇论文,包括人工智能,演化计算,IEEE演化计算交易,Algorithmica,NIPS,IJCAI,AAAI等。他赢得了ACMGECCO2011年度最佳论文奖(TheoryTrack)和IDEAL2016年度最佳论文奖。他还曾担任IEEE计算智能学会(CIS)工作组“TheoreticalFoundationsofBio-inspiredComputation”的主席。

钱超研究员个人信息节选自:

http://staff.ustc.edu.cn/~chaoqian/

https://www.springer.com/cn/book/9789811359552#aboutAuthors

下面看看俞扬教授简单介绍该书的知乎原文"致青春"

https://zhuanlan.zhihu.com/p/62178187

正文(致青春)

最近与周老师、钱超一起完成了一本书。书的名字叫

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》,但是对于我来说,可以叫“致青春”。从2005年硕士入学开始,抱着演化算法理论这个硬骨头开始啃。

我的数学基础并不好,在我同一届进入LAMDA的同学中,毫无疑问是垫底,但也许优点是胆子大,周老师说这个方向重要,那就干。这个领域真是四处不讨好,让我深刻体验了什么叫冷板凳。即使是在演化计算领域里,对于搞应用的来说,理论太滞后,没有指导意义,甚至关注理论进展的人都很少。而放在整个人工智能领域里,更是艰难,当时演化计算就已经是在顶级会议上冷下去的话题了。

2000年前,IJCAI还出现了演化计算的session,2000年左右,随着上一波演化神经网络结构优化的兴起演化算法也还在火(是的,NAS并不是这几年发明的,20年前的东西了),之后也随着神经网络的冷淡,大家放弃启发拥抱理论更清楚的方法,演化计算也迅速在顶级会议上隐匿。所以演化计算的论文要发在顶级会议上极其困难,而理论更甚,不仅要回答技术问题,还要回答诸如这个方向还有研究价值吗、这个理论怎么指导算法,之类的问题。

回想起来在AAAI2006发表的第一篇做演化算法复杂度分析的论文,真是走运,其中一个审稿人一个字审稿意见都没写,直接打了满分。

看到最终成稿,收录了我们十几年努力的结果,感觉这么多年也没白做,现在从理论、算法、到应用效果都能打通,AAAI、IJCAI、NIPS也都有发表了,尤其是NIPS2017的工作,回答了一个长久以来演化计算领域面临的核心挑战:“有什么问题能证明是以往算法做不到而演化算法能做到的”。

致我的青春年华。以后只能是个拼搏的中年人了。。。

书籍链接:

https://www.springer.com/cn/book/9789811359552

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》简介

许多机器学习任务涉及解决复杂的优化问题,例如处理不可微分,非连续和非唯一的目标函数;在某些情况下,甚至难以定义明确的目标函数。演化学习(Evolutionarylearning)应用演化算法来解决机器学习中的优化问题,并在许多应用中产生了令人满意的结果。然而,由于演化优化的启发性特征,迄今为止的大多数结果都是经验性的,缺乏理论支持。这个缺点使得进化学习不再受到机器学习社区的欢迎。

最近,为解决这个问题付出了相当大的努力。本书将分成系列来介绍这些努力,共分为四个部分:

第一部分:简要向读者介绍演化学习并提供了一些预备知识;

第二部分:介绍演化算法中运行时间和近似性能分析的一般理论工具;

第三部分:提出许多关于演化优化中主要因素的理论发现,例如recombination,representation,inaccuratefitnessevaluation,andpopulation;

第四部分:讨论了演化学习算法的发展,为几个代表性任务提供了可证明的理论保证。

致谢

在此感谢周志华教授、俞扬教授和钱超研究员整理这么棒的书籍!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261515
  • 数据挖掘
    +关注

    关注

    1

    文章

    406

    浏览量

    24970
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136233

原文标题:周志华等人新书:《演化学习:理论和算法的进展》正式上线!

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    亿纬锂能受邀出席2025全国电化学大会

    近日,中国化学会第二十三次全国电化学大会在武汉举行。大会围绕电化学、电池、氢能等多个前沿领域设立分会场,汇聚行业专家学者,共话电化学技术新进展
    的头像 发表于 11-11 14:11 279次阅读

    今日看点:智元推出真机强化学习;美国软件公司SAS退出中国市场

    智元推出真机强化学习,机器人训练周期从“数周”减至“数十分钟”   近日,智元机器人宣布其研发的真机强化学习技术,已在与龙旗科技合作的验证产线中成功落地。据介绍,此次落地的真机强化学习方案,机器人
    发表于 11-05 09:44 895次阅读

    自动驾驶中常提的“强化学习”是个啥?

    [首发于智驾最前沿微信公众号]在谈及自动驾驶时,有些方案中会提到“强化学习(Reinforcement Learning,简称RL)”,强化学习是一类让机器通过试错来学会做决策的技术。简单理解
    的头像 发表于 10-23 09:00 328次阅读
    自动驾驶中常提的“强<b class='flag-5'>化学习</b>”是个啥?

    沐曦助力上海创智学院siiRL 2.0全面升级

    在人工智能加速迈向大模型与智能体时代的今天,强化学习(Reinforcement Learning,RL)已经成为推动智能系统演化的关键技术。
    的头像 发表于 09-29 11:38 566次阅读
    沐曦助力上海创智学院siiRL 2.0全面升级

    PID控制算法学习笔记资料

    用于新手学习PID控制算法
    发表于 08-12 16:22 7次下载

    NVIDIA Isaac Lab可用环境与强化学习脚本使用指南

    Lab 是一个适用于机器人学习的开源模块化框架,其模块化高保真仿真适用于各种训练环境,Isaac Lab 同时支持模仿学习(模仿人类)和强化学习(在尝试和错误中进行学习),为所有机器
    的头像 发表于 07-14 15:29 1828次阅读
    NVIDIA Isaac Lab可用环境与强<b class='flag-5'>化学习</b>脚本使用指南

    18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现

    本来转自:DeepHubIMBA本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理
    的头像 发表于 04-23 13:22 1310次阅读
    18个常用的强<b class='flag-5'>化学习</b><b class='flag-5'>算法</b>整理:从基础方法到高级模型的<b class='flag-5'>理论</b>技术与代码实现

    算法进化论:从参数剪枝到意识解码的 AI 革命

    电子发烧友网报道(文 / 李弯弯)在人工智能领域,算法创新无疑是推动技术持续前行的核心动力源泉。近些年来,随着深度学习、强化学习等前沿技术相继取得重大突破,AI 算法在效率提升、可解释
    的头像 发表于 04-19 00:38 2189次阅读

    进群免费领FPGA学习资料!数字信号处理、傅里叶变换与FPGA开发等

    ~ 01、数字信号处理的FPGA实现 旨在讲解前端数字信号处理算法的高效实现。首先概述了当前的FPGA技术、器件以及用于设计最先进DSP系统的工具。阐述了计算机算法的概念、理论、FIR和IIR滤波器
    发表于 04-07 16:41

    射频电路设计——理论与应用

    本资料从低频电路理论到射频、微波电路理论演化过程出发,讨论以低频电路理论为基础结合高频电压、电流的波动特征来分析和设计射频、微波系统的方法——微波等效电路法,使不具备电磁场
    发表于 04-03 11:41

    十年磨一剑,我的新书上市了!

    大家好,我是皮哥Peter,十年磨一剑,我的新书《打通Linux操作系统和芯片开发》上市了!今天,新书开启了5折优惠,满满的干货,高颜值,双色印刷,手感厚实,新书原价139元,限时半价,只要69.5
    的头像 发表于 04-01 07:33 572次阅读
    十年磨一剑,我的<b class='flag-5'>新书</b>上市了!

    请问STM32部署机器学习算法硬件至少要使用哪个系列的芯片?

    STM32部署机器学习算法硬件至少要使用哪个系列的芯片?
    发表于 03-13 07:34

    银基数字钥匙平台正式上线

    领先的汽车智能化解决方案供应商上海银基科技股份有限公司正式宣布,旗下支持Apple钱包中的数字车钥匙接入的银基数字钥匙平台正式上线,该平台全面适配CCC国际标准,标志着数字钥匙全球化部署进程取得重要进展
    的头像 发表于 02-28 13:47 859次阅读

    详解RAD端到端强化学习后训练范式

    受限于算力和数据,大语言模型预训练的 scalinglaw 已经趋近于极限。DeepSeekR1/OpenAl01通过强化学习后训练涌现了强大的推理能力,掀起新一轮技术革新。
    的头像 发表于 02-25 14:06 1020次阅读
    详解RAD端到端强<b class='flag-5'>化学习</b>后训练范式

    华为云 Flexus X 实例部署安装 Jupyter Notebook,学习 AI,机器学习算法

    前言 由于本人最近在学习一些机器算法,AI 算法的知识,需要搭建一个学习环境,所以就在最近购买的华为云 Flexus X 实例上安装了学习
    的头像 发表于 01-02 13:43 860次阅读
    华为云 Flexus X 实例部署安装 Jupyter Notebook,<b class='flag-5'>学习</b> AI,机器<b class='flag-5'>学习</b><b class='flag-5'>算法</b>