斯坦福大学研究人员已经证明,在光学芯片上直接训练人工神经网络是可能的。这一重大突破表明,光学电路可以执行基于电子技术的人工神经网络的关键功能,并且可以更便宜、更快和更节能的方式来执行诸如语音或图像识别等复杂任务。
研究人员已经证明,神经网络可以使用光学电路(图中的蓝色矩形)进行训练。在整个网络中,会有几个连接在一起。激光输入(绿色)信息,通过光学(黑色)芯片。该芯片使用非均匀波束执行对人工神经网络至关重要的操作,它是由曲线段表示的。这些部分将两个相邻的部分连接在一起,并通过调整光学相位(红色和蓝色物体)的设置来调谐,它们的作用就像可以在训练期间调整以执行给定任务的“转轨”。这一研究结果由斯坦福大学研究组的Tyler W. Hughes所证明。
“使用光学芯片比数字计算机更有效地执行神经网络,可以解决更复杂的问题。”斯坦福大学研究小组的Shanhui Fan说。“例如,这将增强人工神经网络执行自动驾驶汽车所需任务的能力,或者对口头问题作出适当的反应。它还能以我们现在无法想象的方式改善我们的生活。”
尽管光学人工神经网络最近被实验证明,但训练步骤是在传统的数字计算机上使用一个模型进行的,然后将最后的设置输入到光学电路中。在光学学会的拥有很高影响力的研究杂志上,斯坦福大学报告了一种直接在设备中训练这些网络的方法,这种方法是通过实现“光学模拟”算法来实现的,这是训练常规神经网络的标准方法。
“使用物理设备而不是计算机模型进行训练可以使训练过程更加精确。”Hughes说。“此外,由于训练步骤是神经网络实现过程中非常昂贵的部分,因此执行这一步骤对于提高人工网络的计算效率、速度和功耗至关重要。”
基于光的网络
虽然神经网络处理通常使用传统计算机执行,但仍有大量工作要设计专门为神经网络计算而优化的硬件。基于光学的设备有很大的兴趣,因为它们可以并行执行,同时使用比电子设备更少的能量。
在这项新的工作中,研究人员通过设计一种传统计算机训练神经网络的方法设计了一种光学芯片,这对实现全光神经网络提出了重大挑战。
一个人工神经网络可以被认为是一个黑匣子,有大量的人工神经网络。在训练过程中,每个训练单元都会有一些变化,然后对系统进行测试,看看算法的性能是否有所提高。
“我们的方法不仅可以帮助你预测转向哪个方向,而且还可以帮助你预测你应该把每一种方法都转化成更接近预期的性能。”Hughes说。“我们的方法大大加快了训练的速度,特别是对于大型网络,因为我们并行地获得了关于每种方法的信息。”
片上训练
新的训练协议工作在光路上,通过改变光学相位的设置来调整光路。将待处理的激光束编码信息发射到光路中,通过光束进行光路传输,并对其进行调整,以训练神经网络算法。
在新的训练协议中,激光器首先通过光路输入。在设备上,计算与预期结果的差异。然后,该信息被用来产生一个新的光信号,该光信号通过光网络以相反的方向发送回来。在这个过程中,研究人员通过测量每个光束周围的光强度,展示了如何并行地检测神经网络性能将如何随着光束的设置而变化。根据这些信息可以改变相位设置,并且过程可以重复,直到神经网络产生期望的结果。
研究人员通过教授一种执行复杂功能的算法,例如在一组点内提取复杂的特征,用光学模拟测试了他们的训练技术。他们发现,光学实现功能与传统计算机相似。
“我们的工作证明,你可以利用物理定律来实现计算机科学算法,”Fan说。“通过在光领域对这些网络进行训练,它表明光神经网络系统可以单独使用光学来实现某些更高的性能。”
目前,研究人员正计划进一步优化该系统,并希望利用它实现神经网络任务的实际应用。他们设计的一般方法可用于各种神经网络体系结构和其他应用,如光学。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
人工神经网络
+关注
关注
1文章
120浏览量
15066 -
光学芯片
+关注
关注
0文章
17浏览量
4728
发布评论请先 登录
相关推荐
热点推荐
NMSIS神经网络库使用介绍
()
riscv_fully_connected_q7()
在NS上跑时和arm的神经网络库一致,可在github上下载CMSIS的库,然后加入到自己库所在的路径下即可。
发表于 10-29 06:08
在Ubuntu20.04系统中训练神经网络模型的一些经验
本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是
发表于 10-22 07:03
无刷电机小波神经网络转子位置检测方法的研究
摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络结构与参数,借助
发表于 06-25 13:06
NVIDIA实现神经网络渲染技术的突破性增强功能
近日,NVIDIA 宣布了 NVIDIA RTX 神经网络渲染技术的突破性增强功能。NVIDIA 与微软合作,将在 4 月的 Microsoft DirectX 预览版中增加神经网络着色技术,让开
【「芯片通识课:一本书读懂芯片技术」阅读体验】从deepseek看今天芯片发展
的:
神经网络处理器(NPU)是一种模仿人脑神经网络的电路系统,是实现人工智能中神经网络计算的专用处理器,主要用于人工智能深度学习模型的加速
发表于 04-02 17:25
BP神经网络与卷积神经网络的比较
BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
如何优化BP神经网络的学习率
优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了模型参数在每次迭代时更新的幅度。过大的学习率可
BP神经网络的优缺点分析
自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP
什么是BP神经网络的反向传播算法
神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络的学习算法。该算法通过计算每层
BP神经网络与深度学习的关系
),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
BP神经网络在图像识别中的应用
BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应
如何训练BP神经网络模型
BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP

重大突破!在光学芯片上直接训练人工神经网络
评论