0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习的发展会带给硬件架构怎样的影响?

张康康 2019-07-29 18:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群


2019 ISSCC 大会于2月17—21日在美国旧金山开幕,Facebook 首席 AI 科学家 Yann LeCun 在会上发表了主题演讲「深度学习硬件:过去、现在和未来」,详细介绍了深度学习研究的发展将如何影响未来硬件架构。

如今,只要在网络上搜索“深度学习”算法,都会显示很多相关的信息,在过去的数十年里,人工智能已经越来越成功地应用于生物识别、语音识别、视频识别、翻译等。国内更是诞生了诸如旷视科技、商汤科技、极链科技Video++、依图科技等优秀人工智能初创企业。设计人员将大量高度并行的计算加载到硬件上,尤其是最初为快速图像渲染而开发的图形处理单元(GPU)。这些芯片特别适合于计算密集型“训练”阶段,该阶段使用许多经过验证的例子来调整系统参数。在“推理”阶段,其中部署深度学习处理的输入,需要更大的存储器访问和快速响应,目前已经可以使用GPU实现。

深度学习与GPU

为了快速应对增长的需求,许多公司都正在开发能够直接赋予深度学习能力的硬件,迫切的需要进行推理以及培训。近年来随着深度学习的迅速发展,卷积神经网络(Convolutional Neural Network)被广泛使用,特别是在图像识别场景中的应用。为了满足更多场景应用,需要有一种能够根据实际场景需求替换不同CNN网络模型的系统框架。在过去的20年里,视频、游戏等产业推动了GPU的进步,其绘制图形所需的矩阵正是深度学习所需的计算类型。

GPU技术的进步则是推动了神经网络的发展,因为在没有GPU的情况下训练深度学习模型在大多数情况下会非常缓慢。许多人把生产中深度学习的想法想的过于复杂,我们可以在生产中使用CPU和选择的网络服务器进行深入学习。生产中进行训练是非常罕见的。即使你想每天更新你的模型权重,也不需要在生产中进行训练。这意味着你只是在生产过程中进行“推理”,比“培训”更快更容易。你可以使用任何你喜欢的Web服务器,并将其设置为简单的API调用。如果能够有效地批量处理数据,GPU只会提供更快的速度。

GPU在处理图形的时候,从最初的设计就能够执行并行指令,从一个GPU核心收到一组多边形数据,到完成所有处理并输出图像可以做到完全独立。由于最初GPU就采用了大量的执行单元,这些执行单元可以轻松的加载并行处理,而不像CPU那样的单线程处理。另外,现代的GPU也可以在每个指令周期执行更多的单一指令。所以GPU比CPU更适合深度学习的大量矩阵、卷积运算的需求。深度学习的应用与其原先的应用需求颇为类似。GPU厂家顺理成章的在深度学习,找到了新增长点。

深度学习发展是否出现“瓶颈”

我们之所以使用GPU加速深度学习,是因为深度学习所要计算的数据量异常庞大,用传统的计算方式需要漫长的时间。但如果未来深度学习的数据量有所下降,或者说我们不能提供给深度学习所需要的足够数据量,是否就意味着深度学习也要进入“瓶颈”了呢?

做深度神经网络训练需要大量模型,然后才能实现数学上的收敛。深度学习要真正接近成人的智力,它所需要的神经网络规模非常庞大,它所需要的数据量,会比我们做语言识别、图像处理要多得多。假设说,我们发现我们没有办法提供这样的数据,则很有可能出现瓶颈。

目前,深度学习还在蓬勃发展往上的阶段。比如我们现阶段主要做得比较成熟的语音、图像、视频方面,整个的数据量还是在不断的增多的,网络规模也在不断的变复杂。可以说深度学习是GPU计算发展的关键,谁能找到最适合深度学习的模式,谁就是胜利者。

结语:

深度学习经过这么长时间的发展,在网络的种类、复杂程度和处理的信息量上都发生了天翻地覆的变化。当前,网络种类上,从早期的 AlexNet 和 GoogleNet 到现在各企业推出的 GAN以及各种深度强化学习的网络,它们各自网络结构都有不同,开发者在适应最新的网络上常常会遇到一些麻烦。处理的信息量也在成倍地增长,算力需求越来越高的情况下,也将对搭载处理单元的硬件有着更高的要求。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123911
  • 深度学习技术

    关注

    0

    文章

    11

    浏览量

    6924
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    的亮点及优势? 一、课程亮点 工业级案例:包含双CCD光学分选转盘、机械手手眼协调等12个完整项目 源码交付:所有案例提供LabVIEW源代码,包含深度学习模型DLL 硬件联动:支持工业相机硬触发
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    、锂电池产线的视觉检测工位。 二、职业发展: 目前行业市场具备深度学习能力的视觉系统占比已突破40%,催生大量复合型技术岗位需求: • 岗位缺口:视觉算法工程师全国缺口15万+,缺陷检测专项人才招聘响应率
    发表于 12-03 13:50

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于学习的外观质量标准判定 精密
    的头像 发表于 11-27 10:19 55次阅读

    请问UART硬件FIFO深度是多少?如何避免数据溢出?

    UART 硬件 FIFO 深度是多少?如何避免数据溢出?
    发表于 11-21 06:59

    自动驾驶中Transformer大模型会取代深度学习吗?

    [首发于智驾最前沿微信公众号]近年来,随着ChatGPT、Claude、文心一言等大语言模型在生成文本、对话交互等领域的惊艳表现,“Transformer架构是否正在取代传统深度学习”这一话题一直被
    的头像 发表于 08-13 09:15 3919次阅读
    自动驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    Transformer架构概述

    由于Transformer模型的出现和快速发展深度学习领域正在经历一场翻天覆地的变化。这些突破性的架构不仅重新定义了自然语言处理(NLP)的标准,而且拓宽了视野,彻底改变了AI的许多
    的头像 发表于 06-10 14:24 957次阅读
    Transformer<b class='flag-5'>架构</b>概述

    GPU架构深度解析

    GPU架构深度解析从图形处理到通用计算的进化之路图形处理单元(GPU),作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算
    的头像 发表于 05-30 10:36 1327次阅读
    GPU<b class='flag-5'>架构</b><b class='flag-5'>深度</b>解析

    解锁未来汽车电子技术:软件定义车辆与区域架构深度解析

    解锁未来汽车电子技术:软件定义车辆与区域架构深度解析 ——立即下载白皮书,抢占智能汽车发展先机 *附件:解锁未来汽车电子技术:软件定义车辆与区域架构
    的头像 发表于 04-27 11:58 1095次阅读

    如何排除深度学习工作台上量化OpenVINO™的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO™特定层
    发表于 03-06 07:31

    SLAMTEC Aurora:把深度学习“卷”进机器人日常

    在人工智能和机器人技术飞速发展的今天,深度学习与SLAM(同步定位与地图构建)技术的结合,正引领着智能机器人行业迈向新的高度。最近科技圈顶流DeepSeek简直杀疯了!靠着逆天的深度
    的头像 发表于 02-19 15:49 725次阅读

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展深度学习技术的发展深刻影响
    的头像 发表于 02-14 11:15 819次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度学习的定义与发展
    的头像 发表于 02-12 15:15 1341次阅读

    如何快速学习硬件电路

    对于想要学习硬件电路的新手来说,一开始可能感到有些困难,但只要掌握了正确的学习方法和技巧,就能够快速地成为一名优秀的硬件电路工程师。 首先,新手需要了解基本的电路知识,例如电阻、电容、
    的头像 发表于 01-20 11:11 1957次阅读
    如何快速<b class='flag-5'>学习</b><b class='flag-5'>硬件</b>电路

    AI自动化生产:深度学习在质量控制中的应用

    随着科技的飞速发展,人工智能(AI)与深度学习技术正逐步渗透到各个行业,特别是在自动化生产中,其潜力与价值愈发凸显。深度学习软件不仅使人工和
    的头像 发表于 01-17 16:35 1212次阅读
    AI自动化生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b>在质量控制中的应用

    电动汽车驱动系统的控制器硬件架构

    前段时间有星友咨询,想了解电动汽车驱动系统的控制器(逆变器)硬件架构,今天我们借助Infineon主驱逆变器的硬件架构说明下这个问题。
    的头像 发表于 01-10 17:09 1573次阅读
    电动汽车驱动系统的控制器<b class='flag-5'>硬件</b><b class='flag-5'>架构</b>