0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CNN中卷积都有些什么作用

Dbwd_Imgtec 来源:cc 2019-01-16 14:41 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在传统的神经网络中,比如多层感知机(MLP),其输入通常是一个特征向量。需要人工设计特征,然后将用这些特征计算的值组成特征向量。在过去几十年的经验来看,人工找的特征并不总是好用。有时多了,有时少了,有时选的特征根本就不起作用(真正起作用的特征在浩瀚的未知里)。这就是为啥过去几十年神经网络一直被SVM等完虐的原因。

如果有人说,任何特征都是从图像中提取的。那如果把整幅图像作为特征来训练神经网络不就行了嘛,那肯定不会有任何的信息丢失!额,先不说一幅图像有多少冗余信息,单说这数据量就吓死了!

假如有一幅1000*1000的图像,如果把整幅图像作为向量,则向量的长度为1000000(10^6)。在假如隐含层神经元的个数和输入一样,也是1000000;那么,输入层到隐含层的参数数据量有10^12,妈呀,什么样的机器能训练这样的网络呢。所以,我们还得降低维数,同时得以整幅图像为输入(人类实在找不到好的特征了)。于是,牛逼的卷积来了。接下来看看卷积都干了些啥。

局部感知:

卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。

如下图所示:左图为全连接,右图为局部连接。

在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的千分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。

权值共享:

但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。

怎么理解权值共享呢?

我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8×8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8×8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8×8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

如下图所示,展示了一个3*3的卷积核在5*5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

多卷积核:

上面所述只有100个参数时,表明只有1个100*100的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:

上图右,不同颜色表明不同的卷积核。每个卷积核都会将图像生成为另一幅图像。比如两个卷积核就可以将生成两幅图像,这两幅图像可以看做是一张图像的不同的通道。如下图所示:

池化(down-samplin):

在通过卷积获得了特征 (features) 之后,下一步我们希望利用这些特征去做分类。理论上讲,人们可以用所有提取得到的特征去训练分类器,例如 softmax 分类器,但这样做面临计算量的挑战。例如:对于一个 96X96 像素的图像,假设我们已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) × (96 − 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例 (example) 都会得到一个 7921 × 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。

为了解决这个问题,首先回忆一下,我们之所以决定使用卷积后的特征是因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池化 (pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。

多卷积层:

在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。

到此,基本上就把CNN中的卷积说全了!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106797
  • cnn
    cnn
    +关注

    关注

    3

    文章

    355

    浏览量

    23248

原文标题:CNN中卷积的意义

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像处理
    的头像 发表于 11-19 18:15 1831次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b>神经网络是个啥?

    一些神经网络加速器的设计优化方案

    单元的速度越快,效率越高(存储空间越小)。 2.CNN存在数据复用 如图所示,CNN 滑动卷积: 2D 卷积核和滑动窗口内 2D
    发表于 10-31 07:14

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    CNN算法简介 我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全连接层。下面是各层作用介绍: 卷积层:提取
    发表于 10-29 07:49

    构建CNN网络模型并优化的一般化建议

    整个模型非常巨大。所以要想实现轻量级的CNN神经网络模型,首先应该避免尝试单层神经网络。 2)减少卷积核的大小:CNN神经网络是通过权值共享的方式,利用卷积运算从图像中提取线性纹理。
    发表于 10-28 08:02

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络
    发表于 10-28 07:31

    在Ubuntu20.04系统训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    在友晶LabCloud平台上使用PipeCNN实现ImageNet图像分类

    利用深度卷积神经网络(CNN)进行图像分类是通过使用多个卷积层来从输入数据中提取特征,最后通过分类层做决策来识别出目标物体。
    的头像 发表于 04-23 09:42 877次阅读
    在友晶LabCloud平台上使用PipeCNN实现ImageNet图像分类

    自动驾驶感知系统卷积神经网络原理的疑点分析

    背景 卷积神经网络(Convolutional Neural Networks, CNN)的核心技术主要包括以下几个方面:局部连接、权值共享、多卷积核以及池化。这些技术共同作用,使得
    的头像 发表于 04-07 09:15 641次阅读
    自动驾驶感知系统<b class='flag-5'>中</b><b class='flag-5'>卷积</b>神经网络原理的疑点分析

    如何使用MATLAB实现一维时间卷积网络

    本文对一维卷积操作进行介绍,包括一维扩展卷积和一维因果卷积,以及 MATLAB 对一维卷积的支持情况。在最后通过一个实例演示如何在 MATLAB 中将一维
    的头像 发表于 03-07 09:15 1666次阅读
    如何使用MATLAB实现一维时间<b class='flag-5'>卷积</b>网络

    请问OpenVINO™工具套件是否支持使用非对称卷积的支持模型?

    无法确定使用非对称卷积的模型是否受 OpenVINO™ Toolkit 的支持
    发表于 03-06 07:58

    BP神经网络与卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) : CNN主要由
    的头像 发表于 02-12 15:53 1307次阅读

    FPGA图像处理基础----实现缓存卷积窗口

    素行进行缓存与变换。由于在图像处理过程,经常会使用到卷积,因此需要对图像进行开窗,然后将开窗得到的局部图像与卷积核进行卷积,从而完成处理。   图像数据一般按照一定的格式和时序进行传
    的头像 发表于 02-07 10:43 1417次阅读
    FPGA图像处理基础----实现缓存<b class='flag-5'>卷积</b>窗口

    反相器在数字电路中都有作用呢?

    1,反相器在数字电路中都有作用呢?我学习的项目中,dsp出来的时钟信号并没有直接给ad采样芯片,而是经过反相器两次反转之后才给的ad,这有什么作用呢 2,数据手册Static c
    发表于 01-22 06:51

    DAC8760的Iout和Vout都有两个TVS防护,这两个各是什么作用

    1、DAC8760的Iout和Vout都有两个TVS防护,这两个各是什么作用? 2、如果我只希望DAC8760输出0-5V和4-20mA,输出电路的两个TVS都要加么?
    发表于 12-30 06:49

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    。 填充(Padding): 填充(Padding)是在卷积神经网络(CNN为输入张量的边缘添加额外的像素,以控制输出特征图的大小并保持输入图像的空间尺寸。填充有助于保留输入图像边缘的信息,并在
    发表于 12-19 14:33