0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

了解深度学习神经网络的现状,英特尔FPGA实施神经网络的必然之选

电子工程师 来源:lq 2018-12-17 16:03 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在脑认知科学中有这么一个观点,如果几个神经元之间经常构成连通路,且通过这几个神经元进行信息传递不如两者直接通过在彼此中间“搭桥”进行信息传递来得快,那么大脑结构就会根据细胞结构上信息传递的频率在两者之间帮助生出一个神经元来帮助更高效的获取与处理大脑信息。

从上面这个内容中我们可以发现,现在人工智能的发展并不足够完美,但我们依然受类似的生物系统启发从而提出神经网络结构,并将之用于人工智能技术的发展。现在,通过融合强大计算资源和用于神经元的新型架构,神经网络已然在计算机视觉和机器翻译等很多领域都取得了最先进的成果。

然而相对来说,这样的技术发展可都有各种严格的要求,尤其速度。那么我们现代人在大数据喷发的今天,是怎么做到计算与速度两者皆备的呢?在此之前,我们不妨先来了解深度学习神经网络的现状。

深度学习神经网络现状

深度学习神经网络系统目前已能够为许多人提供最佳解决方案,并已用于图像识别和自然语言处理的大型计算问题。更多的人使用传统的处理来模仿神经网络并创建一个系统,并通过观察来学习。虽然我们在这个领域已经取得了很大进展,但基于Web的神经网络高性能系统开发等多种技术,在功耗,成本和性能方面仍然存在重大挑战。

此外,最广泛使用的深度学习系统是卷积神经网络(细胞神经网络)。这些系统使用神经元的前馈人工网络执行图像识别。如有线电视新闻网是由层组成。其中,池化层通过最大值或值平均,池化减少变化图像特定区域的共同特征。CNN层的数量与图像识别的准确性相关;更多图层需要更多系统性能。这些层可以独立运行。

图1:二维卷积层

多核处理系统使用外部存储器缓冲每层之间的数据,这需要大量的内存与带宽。到目前为止,神经网络中性能最强的功能是卷积自己。传统的处理器内核必须为每个内核执行大量指令。卷积需要大量的处理与带宽。

实现CNN的有效实施有两个主要挑战。首先是能够在管道中执行函数,将数据从上一个层传递到下一个。第二是有效地执行卷积函数。另外,这些功能应该用一种方法构建允许轻松重新编程不同类型的硬件和移植到未来的高级硬件,否则,每个新的实现都需要广泛的重新优化。

英特尔FPGA,实施神经网络的必然之选

在英特尔公司,FPGA 当称实施神经网络的必然之选,它可在同一设备上处理计算、逻辑和存储资源中的不同算法。与其它同行对手的装置相比,其性能更快,用户可通过硬件来完成核心部分运算。加上软件开发者可使用 OpenCL™1C 级编程标准,将 FPGA 作为标准 CPU 的加速器,更加无需处理硬件级设计。

“Why?因为它能将计算,逻辑和内存资源结合在一起共同使用。再加上英特尔®FPGASDK的帮助,使得它能够适用于各种加速应用并使用更多复杂的算法。软件开发人员也可以使用OpenCL C级编程标准。”

此外,英特尔已经开发出可扩展的卷积神经网络参考设计,并用于使用OpenCL编程的深度学习系统。(使用OpenCL SDK构建的语言)这个设计首先是在Stratix®V器件系列上实现,现在适用于Arria®10器件。设计表现是使用两个流行的CNN基准进行基准测试:CIFAR-10和ImageNet。(典型的GPU实现批处理图像需要大量的外部存储器带宽。相比之下,FPGA可以一次性处理图像,芯片上的数据重用率更高,外部使用更少内存带宽。)

图2:神经网络数据通道

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英特尔
    +关注

    关注

    61

    文章

    10275

    浏览量

    179248
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106769
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123890

原文标题:从“脑认知科学”看神经元之旅,你对深度神经网络该有这样的认知

文章出处:【微信号:FPGAer_Club,微信公众号:FPGAer俱乐部】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 656次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络专家系统在电机故障诊断中的应用

    摘要:针对传统专家系统不能进行自学习、自适应的问题,本文提出了基于种经网络专家系统的并步电机故障诊断方法。本文将小波神经网络和专家系统相结合,充分发挥了二者故障诊断的优点,很大程度上降低了对电机
    发表于 06-16 22:09

    基于FPGA搭建神经网络的步骤解析

    本文的目的是在一个神经网络已经通过python或者MATLAB训练好的神经网络模型,将训练好的模型的权重和偏置文件以TXT文件格式导出,然后通过python程序将txt文件转化为coe文件,(coe
    的头像 发表于 06-03 15:51 887次阅读
    基于<b class='flag-5'>FPGA</b>搭建<b class='flag-5'>神经网络</b>的步骤解析

    BP神经网络网络结构设计原则

    ,仅作为数据输入的接口。输入层的神经元个数通常与输入数据的特征数量相对应。 隐藏层 :对输入信号进行非线性变换,是神经网络的核心部分,负责学习输入与输出之间的复杂映射关系。隐藏层可以有一层或多层,层数和
    的头像 发表于 02-12 16:41 1248次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1301次阅读

    如何优化BP神经网络学习

    优化BP神经网络学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性
    的头像 发表于 02-12 15:51 1418次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1562次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络学习算法。该算法通过计算每层网络的误差,并将这
    的头像 发表于 02-12 15:18 1269次阅读

    BP神经网络深度学习的关系

    BP神经网络深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播
    的头像 发表于 02-12 15:15 1338次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1504次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP
    的头像 发表于 02-12 15:12 1182次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个
    的头像 发表于 01-23 13:52 838次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2235次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法