0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

布局AI芯片 谷歌边缘端TPU发神威

mK5P_AItists 来源:未知 作者:胡薇 2018-11-21 15:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

2018年7月Google在其云端服务年会Google Cloud Next上正式发表其边缘(Edge)技术,与另两家国际公有云服务大厂Amazon/AWS、Microsoft Azure相比,Google对于边缘技术已属较晚表态、较晚布局者,但其技术主张却与前两业者有所不同。

Google AI布局逐渐走向边缘

除了同样提倡基础的物联网闸道器(IoT Gateway)软件Edge IoT Core、人工智慧/机器学习(AI/ML)软件Edge ML外,还针对人工智慧/机器学习推出专属的加速运算芯片,称为Google Edge TPU(图1),成为此次盛会一大焦点。

图1 Google发表仅有1美分铜板面积不到的人工智慧加速运算芯片Edge TPU。

资料来源:Google官网

在Google发表Edge TPU前已发表过Cloud TPU芯片,首次发表是在Google另一个更全面、更盛大的例行年会Google I/O 2016上。Cloud TPU顾名思义用于云端机房,而TPU是TensorFlow Processing Unit的缩写,言下之意是针对TensorFlow而设计的硬件加速运算器,TensorFlow则是Google于2015年11月提出的人工智慧框架,是目前诸多人工智慧框架中的一大主流,其他知名的框架如Caffe/Caffe 2、Apache MXnet等。

目前人工智慧框架百花齐放,其他常见的亦有Keras、PyTorch、CNTK、DL4J、Theano、Torch7、Paddle、DSSTNE、tiny-dnn、Chainer、neon、ONNX、BigDL、DyNet、brainstorm、CoreML等。若以简单譬喻而言,人工智慧的开发撰写如同文书撰写,人工智慧框架就如同记事本、Word等文书处理器,功效在于协助与便利开发撰写。

Google自行开发设计的Cloud TPU仅用于自家云端机房,且已对多种Google官方云端服务带来加速效果,例如Google街景图服务的文字处理、Google相簿的照片分析、乃至Google搜寻引擎服务等。Google Cloud TPU也改版快速,2016年首次发表后2017年推出第二代,2018年推出第三代芯片(图2)。

图2 Google连续三年在Google I/O上揭露自研的Cloud TPU新技术动向。

资料来源:Google官网

不过,Google之后对Cloud TPU的技术态度似有变化。2018年2月宣布可申请租用TPU运算力,如同Google Cloud Platform(GCP)的公有云服务般,依据运算芯片的使用时间计费,每小时6.5美元(至2018年9月已降至4.5美元) ,与GCP的CPU租用服务相比相当昂贵,GCP的CPU租用服务,以***彰化滨海工业区的机房(不同位置的机房费率不同)而言,标准型计价约在0.055至5.28美元间,且8种计费费率中有5种低于1美元/小时。

TPU租用费亦同样高于GPU租用,GCP的NVIDIA GPU租用费率约在0.49至2.48美元间,视规格等级而异(Tesla K80/P100/V100)。Google Cloud TPU虽可租用,但Google是否愿意单独销售Cloud TPU给系统商,让系统商制造及销售TPU运算系统,仍待进一步观察。

在Google推出云端用的Cloud TPU后,让人未预料的是Google也针对边缘提出专属的TPU芯片,然在此前仍有些征兆,即2017年11月Google提出轻量版的TensorFlow Lite(某种程度取代此前的TensorFlow Mobile),使电力有限的行动装置也能支援TensorFlow,2018年推出的Edge TPU芯片即是以执行TensorFlow Lite为主,而非原宗的TensorFlow。

Google Edge装置内的作业系统为LinuxAndroid Things,而后执行Google Edge IoT Core基础功能软件、Google Edge ML人工智慧软件,并可选用配置Google Edge TPU。

Google Edge软硬件架构概观

图3左侧为物联网感测器,右侧为Google云端系统及服务。另外Edge TPU也支援Android Neural Networks 神经网路应用程式介面(API),简称NNAPI(图4)。NNAPI于在2017年12月Android 8.1释出时一同提出,NNAPI可视为TensorFlow Lite、Caffe2等框架的基础层。由此可知Edge TPU所支援呼应并加速的软件,于2017年便已先行到位。

图3 Google Edge装置软硬件架构图资料来源:Google官网

图4 Google Android NNAPI系统架构图,NNAPI可透过硬件抽象层与驱动程式,运用GPU、特定处理器或数位讯号处理器(DSP)等,使人工智慧运算加速。资料来源:Google官网

与Cloud TPU不同的是,Edge TPU估将由Google销售给系统商,再由系统商配置于前端装置内,包含感测器节点、装置或闸道器内,Edge TPU不是自用或租用而是销售。

Edge TPU技术轮廓

虽然Google对Cloud TPU、Edge TPU的技术资讯揭露均不多,但仍有若干资讯可推测其背后意向与考量。

首先是Google很明白Edge定位的系统运算力有限,所以Edge TPU的运算任务仅在于执行已训练完成的人工智慧模型,即推测运算、推算工作(Inference,今日多译成「推论」),真正要大量耗费运算力的模型训练(Training),依然由充沛运算力的系统事先进行,如工作站、伺服器、云端等,透过CPU/GPU/TPU进行训练。

其次,Edge TPU强调可同时执行处理多组每秒30张高清晰度画质的人工智慧判别运算,显示Edge TPU将用于视讯影像类的人工智慧应用,且为即时判别(30FPS)。

更进一步的说明,Edge TPU只负责人工智慧的加速判别、加速推算,仅为加速器、辅助处理器的角色。因此,必须与系统的主控芯片沟通联系,这方面Edge TPU提供了两种介接的方式,一是PCI Express介面,另一是USB介面。两种介面均适合嵌入式设计,然PCI Express传输率较高,可避免传输瓶颈,而USB介面较可能定位在后装型运用,即前端装置已经存在,但仍可透过USB连接Edge TPU,带来加速效果。

也由于须与Edge装置整合,因此Edge TPU设计之初已尽可能减少功耗,虽然Google官方并未正式揭露,但已表态将与Google合作的***工控系统商也表示,其典型功耗(Thermal Design Power, TDP)仅在1.8瓦,很明显只要现成芯片封装即可散热,几乎可不加散热片,更不需要马达风扇,便可让Edge TPU正常运作。

至于Edge TPU支援的运算格式则为int8、int16,即8位元整数、16位元整数的人工智慧模型推算,但无法进行更高位元数的整数,或者是浮点数的运算,如16位元浮点数(FP16)。

Google一发表Edge TPU即有合作伙伴与应用的揭露,如南韩乐金(LG)将用于产线制造上;另外纽西兰、澳洲、英国的Smart Parking公司(顾名思义是与智慧停车相关的方案商)也表态采用,Smart Parking不单采用Edge TPU,其后端系统也大量采用GCP服务;还有Xee公司将Edge TPU用于汽车驾驶辅助上,对影像与雷达资料进行研判,而后给予驾驶潜在危险警告,如路况变差、轮胎过度磨损等。目前所知Google将Edge TPU诉求于三个目标,即制造、零售、汽车。

Movidius与Edge TPU的瑜亮情结

在Google尚未推出Edge TPU芯片前,其实Google已有使用前端的人工智慧加速芯片,2011年Google购并Motorola Mobility,而后于2014年将Motorola Mobility售给Lenovo,但Google仍保留下2个原属于Motorola Mobility的研究专案,而未移转给Lenovo,一是模组化手机专案Ara,另一是扩增实境技术专案Tango(此专案于2018年3月结束,改由ARCore技术接手)。

Google在2014年对外揭露Tango研究,此专案所发展的平板、手机等行动装置,即配置了Movidius公司的VPU芯片,VPU即Vision Processing Unit之意,更具体而言是视讯类型的人工智慧运算、推算加速芯片。

Movidius自身发展第一代VPU,而后在与Google合作Tango计画时则为第二代VPU,称为Myriad 2(芯片编号MA2150/MA2450,差别在于MA2150最高连接1Gbit记忆体,MA2450可至4Gbit)。不仅Google采用,包含多轴无人机大厂大疆亦用于无人机上。之后2016年英特尔(Intel)购并Movidius,接手后发展出第三代VPU,称为Myriad X(芯片编号MA2085/MA2485,MA2085封装内无记忆体,MA2485内含4Gbit记忆体)。

Movidius在被英特尔收购后,Google依然钟爱Movidius技术。2017年底Google推出AIY Vision Kit的开发套件,该套件内仍可见MA2450芯片的踪影。AIY Vision Kit是Google用来推行其影像人工智慧技术的评估套件,以树莓派电脑(Raspberry Pi, RPi)为基础提供扩充延伸的硬件配件,即可摸索与评估Google的影像人工智慧技术。

而所谓的AIY是Google自创的复合字,是以人工智慧(AI)与DIY(Do-It-Yourself自己动手做)二字叠合而成。事实上Google在推出Vision Kit的同时也有推出Voice Kit,可供摸索评估Google的语音人工智慧技术,但语音的人工智慧运算其运算负荷并不吃重,不需要专属加速芯片。

从2014年的Tango到2017年底的AIY Vision Kit,Google均以第二代Movidius芯片为主,因此理论上顺其发展,Google即便在Edge环节有其技术主张,认为可配置人工智慧硬件加速芯片,应也会属意Movidius,而非自行研发Edge TPU。

不过,最终Google提出了Edge TPU,因此不得不推测,英特尔购并Movidius后,Google可能认为后续新发展并不完全合乎期待,过往Movidius为小型独立企业时,可能提供Google高度支援,然英特尔可能对Movidius技术资产的后续延伸与新走向有不同的想法。

对此可若干比较第三代Movidius Myriad X与Edge TPU,前者支援FP16的16位元浮点数推测运算及8位元整数推算,而Edge TPU如前述仅支援8位元整数及16位元整数推算;Movidius Myriad系列仍可能顾及潜在市场机会最大化,虽未广泛支援多种AI框架,但至少支援两种现阶段主流框架,即TensorFlow与Caffe。

图5 Google在Tango专案与AIY Vision套件上均使用Movidius MA2450芯片。资料来源:Google官网

由此而论,Google可能对TensorFlow Lite寄予厚望,因而有专属设计的加速芯片Edge TPU,Edge TPU可能一直维持比Movidius Myriad系列更低规(无浮点数)、更专精(只支援TensorFlow Lite )的技术发展定位,更高阶的需求仍会选用Movidius Myriad系列,两者高低并用并行。

或者Google未来只属意自家Edge TPU,只在云端外推行Edge TPU,并一直维持低阶定位,不往更高阶发展,或Edge TPU仅是首发,未来将持续发展更高阶的Edge TPU,如此将与英特尔Movidius竞争,甚在效能规格大幅强化后而与NVIDIA Xavier竞争。

认为Edge TPU将与Movidius竞争的另一支持,在于Edge TPU也将推出USB随身碟型态的开发/运用套件,并同样使用AIY之名推展。早于Movidius未被英特尔收购前,Movidius即有提供USB随身碟型态的人工智慧评估/运用套件(图6),英特尔收购Movidius套件产品仍持续,套件称为NCS(Neural Compute Stick)。

图6英特尔、Google均以PCI Express介面开发板与USB介面随身碟型加速器,来推行其人工智慧加速芯片。资料来源:英特尔、Google

另一需考量的是,虽然Google在技术布局上已逐渐同时注重软硬件的均衡与呼应,自身对于硬件发展的主导与涉入也日深,但就过往经验而言Google的硬件技术策略仍经常摇摆,甚在短期内放弃,因此Edge TPU仍可能不是长期技术策略中的一环,而是一个技术尝试,特别是Cloud TPU、Edge TPU均为加速作用的辅助处理器,为选择性使用,必要时仍可由其他芯片实现相同运算效果,或在英特尔、NVIDIA等芯片商给予更多技术发展承诺后,仍可能停止自有芯片发展路线。

其他产业推测也包含,Google Edge TPU的技术授权来自于Movidius,有可能初始使用Movidius技术与架构之后独立发展,也可能持续向英特尔Movidius取得授权,而始终与英特尔Movidius主力销售芯片保持区隔与技术落差时间。

Edge TPU后续策略、动向推测

展望未来,Edge TPU由于将提供给系统商,估计日后揭露的技术资讯将较Cloud TPU为多,Cloud TPU由于目前只在Google机房端配置,至多提供远端租用,因此可以不揭露更多技术资讯,事实上Google对于第三代Cloud TPU所揭露的资讯,已明显少于前二代。

倘若Edge TPU推展顺遂,支持的系统伙伴日增,则可激励Google更快速发展新版Edge TPU。若推展不如预期,则Google也可能自行推出官方版的Edge闸道器、Edge装置,作为产业示范,或自始至终不投入官方版示范,直接停止Edge TPU后续发展。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6244

    浏览量

    110263
  • TPU
    TPU
    +关注

    关注

    0

    文章

    164

    浏览量

    21539
  • AI芯片
    +关注

    关注

    17

    文章

    2065

    浏览量

    36570

原文标题:一文看懂谷歌的AI芯片布局,边缘端TPU将大发神威

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    直击英伟达腹地?谷歌TPU v7开放部署,催生OCS产业链红利

    Processing Unit, TPU)构建了一套完整的AI算力基础设施体系。   11月,谷歌宣布第七代 TPU v7(代号 Ironwood)将在后续几周大规模上市。与此消息同
    的头像 发表于 11-27 08:53 8394次阅读
    直击英伟达腹地?<b class='flag-5'>谷歌</b><b class='flag-5'>TPU</b> v7开放部署,催生OCS产业链红利

    谷歌云发布最强自研TPU,性能比前代提升4倍

    电子发烧友网报道(文/李弯弯)近日,谷歌云在官方博客上正式宣布,公司成功推出第七代TPU(张量处理器)“Ironwood”,该芯片预计在未来几周内正式上市。   “Ironwood”由谷歌
    的头像 发表于 11-13 07:49 8124次阅读
    <b class='flag-5'>谷歌</b>云发布最强自研<b class='flag-5'>TPU</b>,性能比前代提升4倍

    工业视觉网关:RK3576赋能多路检测与边缘AI

    ~150ms6TOPS NPU 边缘AI推理易对接 MES / 追溯系统 一、产线痛点:从“人看”到“机判”的转变· 多工位/多角度同步:单机位覆盖不足,典型项目需 8~12 路并发,且画面时序一致性要求高
    发表于 10-16 17:56

    此芯科技发布“合一”AI加速计划,赋能边缘AI创新

    此芯科技正式发布“合一”AI加速计划,旨在为边缘计算和AI场景提供高能效的全栈算力解决方案。该计划由此芯科技联合多家行业合作伙伴共同发起,推出基于此芯P1SoC及此芯P1+
    的头像 发表于 09-15 11:53 2011次阅读
    此芯科技发布“合一”<b class='flag-5'>AI</b>加速计划,赋能<b class='flag-5'>边缘</b>与<b class='flag-5'>端</b>侧<b class='flag-5'>AI</b>创新

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片的需求和挑战

    景嘉微电子、海光信息技术、上海复旦微电子、上海壁仞科技、上海燧原科技、上海天数智芯半导体、墨芯人工智能、沐曦集成电路等。 在介绍完这些云端数据中心的AI芯片之后,还为我们介绍了边缘AI
    发表于 09-12 16:07

    AI 边缘计算网关:开启智能新时代的钥匙​—龙兴物联

    在数字化浪潮的当下,AI 边缘计算网关正逐渐崭露头角,成为众多行业转型升级的关键力量。它宛如一座智能桥梁,一紧密连接着各类物理设备,如传感器、摄像头、工业机器等,负责收集丰富的数据信息;另一
    发表于 08-09 16:40

    4450亿美元!Edge AI市场大爆发,英特尔布局哪些AI SoC芯片

    AI边缘计算和IoT增长的最大驱动力,预计到2030年,AI将成为全球边缘市场的重要驱动力,市场规模有望达到4450亿美元。英特尔在边缘
    的头像 发表于 08-04 08:46 6731次阅读
    4450亿美元!Edge <b class='flag-5'>AI</b>市场大爆发,英特尔<b class='flag-5'>布局</b>哪些<b class='flag-5'>AI</b> SoC<b class='flag-5'>芯片</b>?

    边缘AI盒子技术解析:ASIC/FPGA/GPU芯片边缘-云端协同与自适应推理

      电子发烧友网综合报道 边缘AI盒子是一种集成了高性能芯片AI算法和数据处理能力的硬件设备,部署在数据源的边缘侧,如工厂、商场、交通路口
    的头像 发表于 07-13 08:25 4084次阅读

    STM32F769是否可以部署边缘AI

    STM32F769是否可以部署边缘AI
    发表于 06-17 06:44

    首创开源架构,天玑AI开发套件让AI模型接入得心应手

    正式提出“智能体化用户体验”方向,并启动“天玑智能体化体验领航计划”。更值得注意的是,其三大AI工具链的发布——天玑开发工具集、AI开发套件2.0,以及升级的天玑星速引擎与旗舰芯片天玑9400+,标志着联
    发表于 04-13 19:52

    谷歌第七代TPU Ironwood深度解读:AI推理时代的硬件革命

    、架构设计的颠覆性创新 ​ 首款推理专用TPU ​ Ironwood是谷歌TPU系列中首款完全针对AI推理优化的芯片,标志着
    的头像 发表于 04-12 11:10 2910次阅读
    <b class='flag-5'>谷歌</b>第七代<b class='flag-5'>TPU</b> Ironwood深度解读:<b class='flag-5'>AI</b>推理时代的硬件革命

    谷歌新一代 TPU 芯片 Ironwood:助力大规模思考与推理的 AI 模型新引擎​

    电子发烧友网报道(文 / 李弯弯)日前,谷歌在 Cloud Next 大会上,隆重推出了最新一代 TPU AI 加速芯片 ——Ironwood。据悉,该
    的头像 发表于 04-12 00:57 3220次阅读

    科、瑞芯微推陈出新,芯片新品助力边缘AI能力强势进阶

    是撬动智能世界的重要支点,而在边缘智能时代,经济、高效和环保的AI芯片将受到更多企业的关注。 近日,联科、云天励飞、瑞芯微相继发布最新的边缘
    的头像 发表于 04-10 00:13 2436次阅读
    联<b class='flag-5'>发</b>科、瑞芯微推陈出新,<b class='flag-5'>芯片</b>新品助力<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>能力强势进阶

    今日看点丨传谷歌与联科合作推出“更便宜”AI 芯片;奥迪宣布裁员7500人

    1. 传谷歌选择与联科合作推出“更便宜” AI 芯片:因与台积电关系紧密且价格更低   3月17日消息,据外媒报道,两名知情人士消息称,谷歌
    发表于 03-18 10:57 701次阅读

    AI赋能边缘网关:开启智能时代的新蓝海

    的引入彻底改变了这一局面。通过在边缘网关集成AI芯片和算法模型,使其具备了实时数据分析、智能决策和自主控制能力。在工业质检场景中,搭载AI算法的边缘
    发表于 02-15 11:41