0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用神经网络模型加速图像数据集的分类

Xilinx视频 作者:郭婷 2018-11-21 06:08 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

通过图像分类示例,了解Xilinx FPGA如何加速机器学习,这是关键的数据中心工作负载。 该演示使用Alexnet神经网络模型加速了ImageNet图像数据集的分类。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106799
  • 赛灵思
    +关注

    关注

    33

    文章

    1797

    浏览量

    133150
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在
    的头像 发表于 11-19 18:15 1835次阅读
    自动驾驶中常提的卷积<b class='flag-5'>神经网络</b>是个啥?

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能   该库具有用于操作不同权重和激活
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    整个模型非常巨大。所以要想实现轻量级的CNN神经网络模型,首先应该避免尝试单层神经网络。 2)减少卷积核的大小:CNN神经网络是通过权值共
    发表于 10-28 08:02

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    在完成神经网络量化后,需要将神经网络部署到硬件加速器上。首先需要将所有权重数据以及输入数据导入到存储器内。 在仿真环境下,可将其存于一个文件
    发表于 10-20 08:00

    神经网络的并行计算与加速技术

    问题。因此,并行计算与加速技术在神经网络研究和应用中变得至关重要,它们能够显著提升神经网络的性能和效率,满足实际应用中对快速响应和大规模数据处理的需求。
    的头像 发表于 09-17 13:31 887次阅读
    <b class='flag-5'>神经网络</b>的并行计算与<b class='flag-5'>加速</b>技术

    基于神经网络的数字预失真模型解决方案

    在基于神经网络的数字预失真(DPD)模型中,使用不同的激活函数对整个系统性能和能效有何影响?
    的头像 发表于 08-29 14:01 3075次阅读

    神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据怎么查看?

    无法观察神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据
    发表于 03-06 07:10

    使用BP神经网络进行时间序列预测

    使用BP(Backpropagation)神经网络进行时间序列预测是一种常见且有效的方法。以下是一个基于BP神经网络进行时间序列预测的详细步骤和考虑因素: 一、数据准备 收集数据
    的头像 发表于 02-12 16:44 1268次阅读

    BP神经网络与卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) : CNN主要由卷积层、池化层和全连接层组成。
    的头像 发表于 02-12 15:53 1308次阅读

    如何优化BP神经网络的学习率

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了模型参数在每次迭代时更新的幅度。过大的学习率可
    的头像 发表于 02-12 15:51 1424次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强
    的头像 发表于 02-12 15:36 1586次阅读

    BP神经网络图像识别中的应用

    BP神经网络图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络图像识别中应
    的头像 发表于 02-12 15:12 1188次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络
    的头像 发表于 02-12 15:10 1466次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时
    的头像 发表于 01-09 10:24 2252次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法