0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

数据集衍生出自动驾驶行业新的商业模式

高工智能汽车 来源:未知 作者:姚远香 2018-10-05 14:58 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

数据集是机器学习算法的命脉——从某种意义上讲,数据集对于自动驾驶人工智能应用领域,最重要的是它们的质量最高。同时,数据集也衍生出自动驾驶行业新的商业模式。

这就是为什么nuTonomy今天发布了一个名为nuScenes的自动驾驶数据集,它声称其规模和精确度超过了KITTI、百度的ApolloScape和Udacity自动驾驶汽车数据集等公共数据集。

Scale为nuScenes提供了数据注释,公司首席执行官表示,这是有史以来发布的最健壮的开放源码,基于多传感器自动驾驶数据集。

NuTonomy编辑了1000多个场景,其中包含140万幅图像、40万次激光雷达扫描(判断物体之间距离)和110万个三维边界框(用RGB相机、雷达和激光雷达组合检测的物体)。

它们已经通过Scale的传感器融合注释API进行了细致的标签,该API利用人工智能和人类团队进行数据注释,并且从本周开始面向行业开源。

近年来,越来越多的公司在加入这个行列。比如,早些时候全球红外系统供应商Flir发布了基于热成像仪拍摄的1万多张带标注图片。Mapillary公司发布了25000张街道级别的图像,以及加州大学伯克利分校上传了10万张基于RGB相机拍摄的视频序列。

之所以被称之为比之前其他公司和机构发布的数据集更为全面,是因为此次数据搜集使用了6个摄像头、1个激光雷达、 5个毫米波雷达、GPS及惯导系统,包括对于自动驾驶系统有挑战性的复杂道路、天气条件等。

参与此次数据标注的Scale公司,自2016年成立以来,已经为包括Lyft、Voyage、通用汽车、Zoox和Embark在内的客户标出了超过20亿英里的行驶里程。

今年8月,Scale宣布了一轮1800万美元融资,迄今该公司已筹集到2270万美元,报告称去年公司收入增长了15倍。

数据标注的对象通常有图像、语音、文本、视频、雷达等。图像类主要针对视觉识别类公司,所要标注的图像内容包括人像、建筑物、植物、道路、交通标志、车辆等,每项内容下面,又会根据不同的特征进行不同标签的标注。

业内人士表示,一般而言,客户会有自己的需求,公司依规而行。目前在国内,阿里巴巴、腾讯、百度等大型互联网公司,拥有海量的数据标注需求,单个订单量都是以亿元为单位。如此大的订单,基本都是分包给不同的数据标注公司进行处理,国内外还没有一家公司能够处理这样大的订单。

另外还有自动驾驶公司,以及视觉图像处理的公司,也有着数据标注的强烈的需求,他们需要用标注后的数据来训练人工智能,而人工智能的日趋成熟,是永无止境的。

业内人士透露,数据标注是一个简单又困难的事情。简单之处在于,确定了筛选规则以后,操作人员只需依规操作即可,没有执行上的难度,而困难之处在于,数据标注本质上是要获得更准确,更精细化的数据结果,高质量的数据是业内急需的。

“在数据采集上,由原来的普通行车记录仪的数据采集,到现在已有诸多公司开始使用特殊采集设备采集行车数据。在数据标注上,原来的2D标注到3D标注,再到语义分割,3D点云的标注需求,对数据的要求越来越专业”,龙猫数据CEO昝智表示,“我们也正不断开发新的标注工具,适配自动驾驶行业的发展。”

昝智表示,未来至少10年内,各领域对AI数据的获取需求只增不减。在发展的不同阶段,龙猫数据也将不断关注技术更新,适配新的需求。

而在在行业内特斯拉是第一家规模化采集数据的汽车制造商,他们很早就用自己的车辆来收集数据,为无人驾驶技术研发提供基础数据。

由于没有获取车辆数据源的通道,目前有很多汽车厂商都在模仿特斯拉的做法,通过在自己公司生产的车辆上安装采集设备,获取车辆数据并回传到平台,这是一种最直接的方式,也是相对比较明智的做法。

目前,全球主流的自动驾驶测试数据集包括Cityscapes、Imagenet(ILSVRC)、COCO、PASCAL VOC、CIFAR、MNIST、KITTI、LFW等。

Cityscapes

Cityscapes是由奔驰与2015年推出的,提供无人驾驶环境下的图像分割数据集。用于评估视觉算法在城区场景语义理解方面的性能。

Cityscapes包含50个城市不同场景、不同背景、不同季节的街景,提供5000张精细标注的图像、20000张粗略标注的图像、30类标注物体。用PASCAL VOC标准的 intersection-over-union(IoU)得分来对算法性能进行评价。

Cityscapes是目前公认的自动驾驶领域内最具权威性和专业性的图像语义分割评测集之一,其关注真实场景下的城区道路环境理解,任务难度更高且更贴近于自动驾驶等热门需求。

KITTI

KITTI是由德国卡尔斯鲁厄理工学院和丰田芝加哥技术研究院于2012年联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。

KITTI用于评测3D目标(机动车、非机动车、行人等)检测、3D 目标跟踪、道路分割等计算机视觉技术在车载环境下的性能。

KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中多达15辆车和30个行人,还有各种程度的遮挡。

ILSVRC

ILSVRC也就是通常所说的Imagenet数据集,是美国斯坦福的计算机科学家李飞飞模拟人类的识别系统建立的。

它是目前深度学习图像领域应用较多的一个数据集,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注。

COCO

COCO(common objects Dataset)数据集,它由微软赞助,除了基本的图像的标注信息外,还有对图像的语义文本描述,COCO数据集的特点是开源,这使得它在近三来在图像分割语义理解领域取得了巨大的进展,Google的开源show and tell生成模型就是在此数据集上测试的。

PASCAL VOC

PASCAL VOC是视觉对象的分类识别和检测的一个基准测试,提供了检测算法和学习性能的标准图像注释数据集和标准的评估系统。

虽然它在2012年后便不再举办,但其数据集图像质量好,标注完备,非常适合用来测试算法性能。

CIFAR

CIFAR(Canada Institude For Advanced Research)包括CIFAR 10和CIFAR 100两个数据集,它们被标记为8000万个微型图像数据集的子集。

这些数据集是由Vinod Nair、Alex Krizhevsky和Geoffrey Hinton收集的。CIFAR对于图像分类算法测试来说是一个非常不错的中小规模数据集。

MNIST

MNIST(THE MNIST DATABASE of handwritten digits)号称深度学习领域的“Hello World!”,是一个手写的 数字数据集。当前主流深度学习框架几乎无一例外将MNIST数据集的处理作为介绍及入门第一教程。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
  • 数据集
    +关注

    关注

    4

    文章

    1230

    浏览量

    26046
  • 自动驾驶
    +关注

    关注

    791

    文章

    14671

    浏览量

    176559

原文标题:自动驾驶数据集也是一门好生意 | GGAI产品

文章出处:【微信号:ilove-ev,微信公众号:高工智能汽车】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    L4级自动驾驶数据采集系统首选

    引言:自动驾驶数据采集的核心挑战 随着L4级自动驾驶技术进入商业化落地阶段,如何高效采集并处理海量多源传感器数据成为
    的头像 发表于 11-26 09:31 238次阅读

    萝卜快跑将在瑞士推出自动驾驶出行服务AmiGo

    今天,萝卜快跑与瑞士领先的公共交通运营商——瑞士邮政旗下的邮政巴士(PostBus)达成战略合作,将在瑞士推出自动驾驶出行服务“AmiGo”。
    的头像 发表于 10-27 16:07 542次阅读

    传统车企和造车新势力在自动驾驶技术上各有什么优势?

    [首发于智驾最前沿微信公众号]在谈今天这个话题之前先申明,之所以聊这个内容并不是为了给谁贴标签,而是想把现实中影响自动驾驶研发与落地的关键能力说清楚。自动驾驶既涉及传感器和感知算法,也涉及整车
    的头像 发表于 10-14 15:10 316次阅读
    传统车企和造车新势力在<b class='flag-5'>自动驾驶</b>技术上各有什么优势?

    什么是自动驾驶数据标注?如何好做数据标注?

    [首发于智驾最前沿微信公众号]在自动驾驶系统的开发过程中,数据标注是一项至关重要的工作。它不仅决定了模型训练的质量,也直接影响了车辆感知、决策与控制的性能表现。随着传感器种类和数据量的剧增,有效
    的头像 发表于 07-09 09:19 938次阅读
    什么是<b class='flag-5'>自动驾驶</b><b class='flag-5'>数据</b>标注?如何好做<b class='flag-5'>数据</b>标注?

    卡车、矿车的自动驾驶和乘用车的自动驾驶在技术要求上有何不同?

    [首发于智驾最前沿微信公众号]自动驾驶技术的发展,让组合辅助驾驶得到大量应用,但现在对于自动驾驶技术的宣传,普遍是在乘用车领域,而对于卡车、矿车的自动驾驶发展,却鲜有提及。其实在卡车、
    的头像 发表于 06-28 11:38 719次阅读
    卡车、矿车的<b class='flag-5'>自动驾驶</b>和乘用车的<b class='flag-5'>自动驾驶</b>在技术要求上有何不同?

    小马智行助力公路干线物流自动驾驶发展

    现状及未来前景,向行业传递了干线物流车路云产业落地趋势,具有重要的行业意义。小马智行作为报告的自动驾驶技术组牵头单位,青骓物流作为报告的商业组主要参与单位,为此次报告的发布做出了重要贡
    的头像 发表于 06-19 13:59 916次阅读

    小马智行与广州公交集团达成战略合作,发力自动驾驶商业

    运营服务等领域展开合作。 自动驾驶出行服务是小马智行的核心业务,也是双方合作的重心。在商业运营方面,双方将推动各自出行平台互联互通,同时满足自动驾驶汽车定制化和个性化项目的需求。 由于自动驾驶
    的头像 发表于 05-28 17:10 946次阅读

    新能源车软件单元测试深度解析:自动驾驶系统视角

    。 ‌自动驾驶软件的特殊性‌ ‌ 感知层: ‌激光雷达、摄像头等传感器数据处理算法的单元测试需覆盖极端场景。例如,激光雷达点云滤波算法在雨雪天气下的噪声抑制能力需通过边界测试验证。某厂商曾在测试中遗漏
    发表于 05-12 15:59

    自动驾驶行业常提的高阶智驾是个啥?

    [首发于智驾最前沿微信公众号]近年来,随着人工智能、大数据、传感器技术及高性能计算平台的迅速发展,自动驾驶行业不断突破。从最初的驾驶辅助系统到最近火热的端到端,再到如今的高阶智驾,智驾
    的头像 发表于 04-18 12:24 856次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>行业</b>常提的高阶智驾是个啥?

    东风汽车推出端到端自动驾驶开源数据

    近日,智能网联汽车智驾数据空间构建研讨会暨中汽协会智能网联汽车分会、数据分会2024年度会议在上海举办。会上,东风汽车发布行业规模最大、涵盖125万组高质量数据的端到端
    的头像 发表于 04-01 14:54 1023次阅读

    自动驾驶行业,分析数据标注在人工智能的重要性

    自动驾驶中,数据标注的作用尤为突出。自动驾驶系统依赖大量传感器数据(如摄像头、激光雷达、雷达等)来感知周围环境,而这些数据必须经过精确标注
    的头像 发表于 02-08 15:43 1474次阅读

    自动驾驶的未来 - 了解如何无缝、可靠地完成驾驶

    。 汽车行业正在向自动驾驶汽车靠拢,其发展势头越来越强,其目标不仅是让驾驶员的生活更简单,而且要消除道路上的碰撞。 自动驾驶汽车已经上路,因为该行业
    的头像 发表于 01-26 21:52 905次阅读
    <b class='flag-5'>自动驾驶</b>的未来 - 了解如何无缝、可靠地完成<b class='flag-5'>驾驶</b>

    2024年自动驾驶行业热点技术盘点

    感知轻地图以及纯视觉等。这些技术的出现,也代表着自动驾驶正从概念走向现实,今天就给大家来盘点2024年自动驾驶行业出现的那些技术热点!   城市NOA:迈向精细化驾驶的关键路径 城市N
    的头像 发表于 01-14 10:48 1151次阅读

    从《自动驾驶地图数据规范》聊高精地图在自动驾驶中的重要性

    自动驾驶地图作为L3级及以上自动驾驶技术的核心基础设施,其重要性随着智能驾驶技术的发展愈发显著。《自动驾驶地图数据规范》(DB11/T 20
    的头像 发表于 01-05 19:24 2869次阅读
    从《<b class='flag-5'>自动驾驶</b>地图<b class='flag-5'>数据</b>规范》聊高精地图在<b class='flag-5'>自动驾驶</b>中的重要性