0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于单神经元的PID控制实现

电子设计 作者:工程师飞燕 2018-08-31 08:31 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

介绍了一种单神经元自适应控制的方法,并提出了在线调整的方法。该方法结构简单,便于在分散控制系统中实现。

0 引言

在工业过程控制中,PID控制是历史最悠久、生命力最强的控制方式。这主要是因为这种控制方式具有直观、实现简单和鲁棒性能好等一系列优点。在火电厂分散控制系统中,单输入单输出(SISO)、采用PID控制规律、简单的控制回路一般占80%以上。但是,许多热工对象都具有大时延、大惯性的特性,使得过渡过程时间变长,调节品质变差;另外,对于高阶或多变量强耦合过程,PID的整定与控制都存在困难。由于整定条件常常受到限制,以及对象的动态特性随着工况、环境等变化而发生变化,PID参数往往难以达到最优状态。

为此,本文提出一种单神经元自适应控制的方法。通过大量的仿真实验表明,该方法简单易行,具有比普通PID算法好得多的控制效果。

1基于单神经元的自适应控制

神经元的输入信号由4部分组成:前馈控制信号x1(t)、反馈比例控制信号x2(t)、反馈微分控制 信号x3(t)、反馈积分控制信号x4(t)。它是一种多层次多模式的控制结构,集前馈和反馈于一体,互为关联,互为补偿。前馈控制信号x1(t)通过ω′1(t) 直接作用于受控对象,加快了系统的响应速度;x2(t)能迅速减小跟踪误差;x3(t) 可以改善系统的响应速度,减小超调量;x4(t) 使系统趋近于稳态无差,提高了控制的准确性。权值ω′i(t)(i=1,2,3,4)反映了受控对象和过程的动态特性,神经元通过自身的学习策略不停地调整ω′i(t)(i=1,2,3,4),在4种控制的关联作用下迅速消除偏差,进入稳态。

权值调整方法采用有监督Hebb学习算法[2],同时为了保证学习算法的收敛性和控制的鲁棒性,可采用规范化的学习算法。控制算法如下式:

基于单神经元的PID控制实现

2仿真实验研究

进行单神经元自适应控制仿真实验,实验结果见图2。PID的参数Ti、δ和Td是通过寻优得到的最优参数。在t=0.56 s时加了一个内扰。可见单神经元自适应控制比普通PID控制响应速度快,控制效果好。

大量的仿真实验表明,单纯调节学习速率η对控制效果的影响不明显。K是神经元的比例系数,它对开环放大倍数较大的受控对象,可以起到衰减神经元控制效果、消除学习过程的冲击的作用;而对开环放大倍数较小的受控对象,则可以起到增强神经元控制效果、保证神经元在全局范围内搜索到E{[r(t)-y(t)]2} 的最小值的作用。仿真实验表明,K取的较大时,系统动态启动快,但超调量大,调整时间长;K取的较小时,系统响应变慢,超调量下降,但如果K取的太小,则响应跟踪不上给定信号。

对K的分析表明,应当在响应初期取较大的值,以提高响应速度;而在进入稳态以后,K应逐步减少到某一稳定值,以保证系统不出现过大的超调量。为了满足上述要求,可以采用非线性变换法对K进行在线修改,调整公式如下:

基于单神经元的PID控制实现

式中,K0为K的稳态值;α为待定参数,其值视控制效果进行调整。取偏差的3次方是使偏差较大时K较大,增加响应速度,而偏差较小时,后一项几乎不起作用,以减小超调量。

也可以采用如下简单的分段线性化方法来调整K:

基于单神经元的PID控制实现

对无自平衡对象G(s)=(0.325s+1)-1×(0.5s+1)-1 进行单神经元自适应控制仿真实验,实验结果见图3。在t=5.6 s时加一个内扰。可见控制的响应速度进一步加快。

3结论

以上提出的神经元自适应预测PID控制器,能够提高控制系统的自适应能力和鲁棒性,该控制器结构简单,易于实现,特别是便于在分散控制系统中实现。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • PID控制
    +关注

    关注

    11

    文章

    464

    浏览量

    42154
  • 神经元
    +关注

    关注

    1

    文章

    369

    浏览量

    19110
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    神经元设备和脑机接口有何渊源?

    HUIYING神经元设备的发展历程概述神经元设备的发展经历了从基础信号检测到多功能智能集成的演进过程。自1920年代脑电图(EEG)信号首次被发现以来,神经电极技术逐步发展,如1957年出现的钨微丝
    的头像 发表于 11-03 18:03 1160次阅读
    <b class='flag-5'>神经元</b>设备和脑机接口有何渊源?

    脉冲神经元模型的硬件实现

    实现。所以现有的大部分 SNN 加速器的硬件实现上都采用LIF模型。 如图所示,设计的 SNN 神经核整体架构如图所示。 神经核主要由 LIF
    发表于 10-24 08:27

    SNN加速器内部神经元数据连接方式

    所谓地址事件表达(Address Event Representation,AER),是指通过地址的方式将事件进行表达,然后按时间顺序复用到总线上。已知生物神经元产生脉冲的频率比数字电路要低很多
    发表于 10-24 07:34

    Aerodiode高带宽激光锁定PID控制

    PID-C型激光锁定PID控制器专为实现宽达30MHz控制带宽内的最低噪声水平而设计。该设备采用触屏
    的头像 发表于 10-22 07:48 165次阅读
    Aerodiode高带宽激光锁定<b class='flag-5'>PID</b><b class='flag-5'>控制</b>器

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统的神经网络相比,LNN旨在通过模拟大脑中神经元之间的动态连接来处理信息,这种网络能够顺序处理数据,并且保留了对过去输
    的头像 发表于 09-28 10:03 695次阅读
    液态<b class='flag-5'>神经</b>网络(LNN):时间连续性与动态适应性的<b class='flag-5'>神经</b>网络

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    。是实现类脑芯片的基本模型。SNN中的神经元通过短的电脉冲相互沟通,脉冲之间的时间间隔起着重要作用。 最有利于硬件实现的脉冲神经元模型是“漏电整合-激发”模型: 与DNN相比,SNN的
    发表于 09-17 16:43

    绝对值光栅编码器:工业精密控制的“数字神经元

    的“数字神经元”,正以毫米级甚至微米级的定位能力,重新定义精密制造的边界。 突破传统:从“相对计数”到“绝对定位”的革命 传统增量式编码器通过脉冲计数实现位置反馈,但存在致命缺陷:断电后需重新校准零点,抗干扰能力
    的头像 发表于 08-19 08:41 441次阅读
    绝对值光栅编码器:工业精密<b class='flag-5'>控制</b>的“数字<b class='flag-5'>神经元</b>”

    新一代神经拟态类脑计算机“悟空”发布,神经元数量超20亿

    电子发烧友网综合报道 8月2日,浙江大学脑机智能全国重点实验室发布新一代神经拟态类脑计算机——Darwin Monkey(中文名“悟空”)。   “悟空”堪称国际首台神经元规模超20亿、基于专用神经
    的头像 发表于 08-06 07:57 7271次阅读
    新一代<b class='flag-5'>神经</b>拟态类脑计算机“悟空”发布,<b class='flag-5'>神经元</b>数量超20亿

    无刷直流电机神经元自适应智能控制系统

    摘要:针对无刷直流电机(BLDCM)设计了一种可在线学习的神经元自适应比例-积分-微分(PID)智能控制器,通过有监督的 Hebb学习规则调整权值,每次采样根据反馈误差对
    发表于 06-26 13:36

    无刷直流电机神经元PI控制器的设计

    摘要:研究了一种基于专家系统的神经元PI控制器,并将其应用于无刷直流电机调速系统中。控制实现了PI参数的在线调整,在具有
    发表于 06-26 13:34

    PID串级控制在同步发电机励磁控制中的应用

    摘 要:为提高发电机勋磁控制系统的稳定性,分析了同步发电机的自并励励磁系统的结构和数学模型,介绍了神经网络预测控制的结构和算法,分别基于PID控制
    发表于 06-16 21:56

    用硬件电路去实现PID控制

    和得到控制量,本文希望通过模拟电子电路方式实现PID。基本的电路图如下所示输入端电流通过电容对反馈的电压与参考电压的差值进行微分处理,并且借助电感对差值实现积分,而
    的头像 发表于 03-03 19:33 1945次阅读
    用硬件电路去<b class='flag-5'>实现</b><b class='flag-5'>PID</b>的<b class='flag-5'>控制</b>

    BP神经网络与卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) : CNN主要由卷积层、池化层和全连接层组成。
    的头像 发表于 02-12 15:53 1307次阅读

    BP神经网络的实现步骤详解

    网络的层数、每层神经元的数量以及激活函数。 初始化权重和偏置 : 随机初始化输入层与隐藏层、隐藏层与隐藏层、隐藏层与输出层之间的连接权重,以及各层的偏置项。这些权重和偏置在训练过程中会逐渐调整。 设置学习率 : 学习率决定了
    的头像 发表于 02-12 15:50 1119次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络。 神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 841次阅读