0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

为什么AI的翻译水平还远不能和人类相比?

电子工程师 来源:未知 作者:工程师李察 2018-08-18 08:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

前一段时间,大家都在热议 Google 的翻译系统出现了一些相当奇怪的结果,例如下图呈现的是最被大家谈及的一个翻译结果。

后来 Google 发言人也对包括数据在内等因素做出了解释(“这只是一个将无意义的话语输入系统然后产生无意义输出的功能”),随后界内一些技术人员也发表了分析与评论,表示这可能与 Google 采用的 NMT(神经机器翻译) 技术有关。

然而经过这一系列事件过后,大家又重新开始思考一个问题:AI 的翻译水平真的已经可以和人类媲美了吗?而本文的作者从 NMT 技术出发,分析了这项技术仍存在的问题,给出了自己明确的态度及答案:AI的翻译水平还远不能和人类相比。

最近,诸多媒体都报道了有关人工智能的翻译已经可以达到人类译者水平的新闻,如:

The Verge – Google's AI translation system is approaching human-level accuracy

The Verge – 谷歌 AI 翻译系统的准确度趋近于人类

Quartz – AI-based translation to soon reach human levels

Quartz – 基于人工智能的翻译即将达到人类水平

ZDNet - Microsoft researchers match human levels in translation news from Chinese to English

ZDNet - 微软研究员表示,机器翻译中文新闻的水平可与人类匹敌

这一显著突破源于神经机器翻译(Neural Machine Translation, NMT)的出现,该方法使用神经网络来进行机器翻译。这项技术应用起来非常出色,是因为它有处理大规模翻译数据的能力。谷歌、Facebook 等大型科技公司在过去几年都引入了 NMT,并开发出了较高水平的翻译功能。

一个例子:引入 NMT 后,谷歌翻译的水平有明显提升

但 NMT 系统真的可以像上述题目说的那样,已经可以和人类译者相比了吗?还差得远呢。我们发现,目前的 NMT 系统并没有他们所说的那么好用,他们忽视了翻译中的许多关键问题。

什么是 NMT?

NMT 在整个 AI 领域中的位置

机器翻译(MT)是 AI 的一个分支,它致力于通过软件来进行不同语言之间的翻译。神经机器翻译(NMT)是一种较新颖的方法,它利用神经网络实现机器翻译。神经网络可以被训练,对数据进行模式识别,从而将输入数据转换为我们所需要的形式。接下来,我们看一个有关 NMT 系统的例子:

一个例子:将法语翻译成英语,引入 NMT 后质量有所提高

如果要将一句法语翻译成英语,NMT 的执行过程如下:先把需要翻译的法语句子输入网络,其中每个单词都会被编码成由数字组成的向量,这样网络才能对其进行处理。接下来,这些数字经过一系列数学公式的计算,最终生成一个新的数字序列,这个序列就代表了要输出的英文句子。

除了上述过程,在实际情况中,还有几个重要步骤:

在进行翻译前,人类工程师需要决定网络的具体结构;

工程师若要运行这样的网络,需要使用具备强大处理能力的计算机;

网络需要基于大量的语料数据,进行反复训练,才能具备合格的翻译水平;

最后,在测试 NMT 系统过程中,工程师要使用训练数据集中没有的语句进行测试,以确保系统在处理外部数据时也能正常工作。
强大的神经网络来源于强大的数据

引入海量数据后,深度神经网络的表现超过了其他模型

神经网络近期获得的成功源于大规模数据的出现。当有了足够多的数据作支撑,深度神经网络的提升尤为明显。同时,网络达到足够的深度,NMT 系统翻译的语句相比于过去技术翻译的结果也更为流畅。这里的“流畅”是指,输出的文本不会过于生硬,甚至有时候会被认为是人工翻译的结果。

NMT 存在什么问题?

回想文章开头提到的几个题目 -- NMT 听起来极其卓越,但它真的可以与人工翻译相比吗?根本不可能。事实上,与人类相比 NMT 在很多方面都存在缺陷。

这些缺陷可归为三类:可靠性、记忆力和判断力。

可靠性:这可能是最令人担忧的一点,NMT 翻译并不可靠。NMT 系统无法保证准确度,常常出现漏掉否定词、整个单词甚至整个短语的情况。

记忆力:NMT 系统还有严重的短期记忆缺陷。目前,我们所建立的系统每次只能翻译一句话,导致其忽略了上文中可能包含的信息。

判断力:NMT 系统对外部的信息与知识几乎没有判断能力。对翻译工作来说,把握一段内容在特定语境中的理解是很重要的,但对机器来说这很难做到。

在接下来的内容里,我会阐述有关这三个缺陷的细节。

可靠性

NMT 无法检查其输出的信息是否真实。例如,NMT 系统可能漏掉否定词或整段信息。这些错误会导致什么后果呢?

“The US did not attack the EU! Nothing to fear,”

这是著名报纸 Le Monde 中用法语报道的内容,然后机器翻译成英语的结果是:

“The US attacked the EU! Fearless.”

试想象,如果这样错误的翻译遍布互联网,在假新闻病毒式传播之前我们来得及更正吗?令人沮丧的是,这样的灾难几乎无法挽回。

▌记忆力

当前的 NMT 系统还有一个明显的不足:每次只能单独翻译一个句子。这意味着机器并不知道它们当前翻译的句子之前的内容。而作为人类,我们阅读文章的时候会联系上下文。

那么为什么我们在训练 NMT 系统时,每次只用一个句子而不是整段文档呢?这里面有技术原因:首先,对神经系统来说,读取一段长文档,储存所有信息并快速调用都很困难;其次,当输入的信息量过大时,系统运行的时间也会更长。所以为了提高效率,我们在训练过程中都使用了单独的语句。

总之,不能联系上下文是 NMT 的主要问题,尤其对于翻译一个故事来说至关重要。讲故事是人类的行为,是创造力、智慧和表达的结合,也因此将我们与动物区分开来。如果 AI 翻译系统连有条理地翻译一个故事都做不到,更不用说文法上是否优雅,怎么能说它们达到了人类的水平呢?

▌判断力

假设你在读一篇关于音乐会的文章,然后使用 NMT 系统把英语翻译成法语,发给了你讲法语的朋友。在英文原文中,文章记录了对许多音乐会参与者的采访,其中包括一位年轻人的感慨:

“I’m a huge metal fan!”

但这句话被翻译成了:

“Je suis un énorme ventilateur en métal” (“I’m a large ventilator made of metal.”)

在这篇文章中,系统并不知道 "metal fan" 是指热爱金属音乐的一类人,直接翻译成了由金属制造的通风装置。

这个问题在机器发展初期就存在了,但至今无法解决。早在 1958 年的相关论文中就提到了该问题,这里有一个经典的例子:

The box was in the pen.

对此 NMT 系统会被 "pen" 这个单词困扰:它在这里指写字的工具还是围栏呢?

对 NMT 系统来说,关于世界的常识知识对翻译来说尤为重要。然而,对这些知识全部进行编码以及从大量数据中提取都是很困难的。我们需要一个有自主判断力的机制,并将常识知识引入到神经网络中。

什么是好的翻译?

我们应该如何评估机器翻译系统的水平?目前,最常用的方法是 BLEU score。我们把机器翻译出的内容与人工翻译的内容做对比,分别计算其 BLEU 分数。如果机器翻译结果中的单词和短语与人工的结果相似度很高,那么系统就会得到较高的 BLEU 分数。

BLEU score 是一种简单却有效的翻译评估方法,尤其在评估性能低的系统时。然而研究者发现,BLEU score 也经常与人类的观点不同。这意味着 BLEU 指标只能在若干低性能系统中挑选出最佳的一个,而面对性能更好的系统进行评估时比较吃力。

相比于 BLEU 评估方法,对翻译结果直接进行人工评估的方法更加出色,但也并非没有缺点。关于人工对机器翻译进行评估,存在两个不可忽视的问题:

人工评估不是自动的,所以成本较高且效率低。

人工评估往往会出现分歧。这个问题不仅存在于 BLEU 方法与人类之间,也存在于人类评估者之间。

总地来说,虽然人工评估效果更好,但它需要很高的成本,同时要求尽量不能出错。进一步来说,在将 NMT 系统与人类译者做对比时,要考虑到评估机制的限制因素。

我们仍在继续努力!未来会如何发展?

NMT 正在飞速发展,新的进步与突破也在被频繁报道着。新的研究正致力于解决以上提出的所有问题:可靠性、数据偏差、无意义输出、记忆力、对常识的判断力以及评估标准。

过去几年,NMT 在表现和效率方面都有所突破。这源于新系统不再需要连续处理数据,如按照从左到右或从右到左的顺序,从而使我们可以同时训练更多的数据,最后生成更合理的翻译结果。

同时,我们可以期待会有越来越多关于新研究的报道。哈佛的 OpenNMT -- 一个可用于 LuaTorch、PyTorch 和 Tensorflow 的开源神经机器翻译工具包,正在迅速融入新的方法,以便于大家可以建立最好的翻译系统。由前谷歌研究员开发的新型商业系统 deepL,声称已经超越谷歌的翻译系统。这是一个发展迅速的领域,这也是一个见证 NMT 不断突破的时代。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6244

    浏览量

    110255
  • AI
    AI
    +关注

    关注

    89

    文章

    38090

    浏览量

    296551
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261498

原文标题:为什么AI的翻译水平还远不能和人类相比?

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    VS680 HDMI AI分析解决方案 #目标识别 #视频翻译 #AI #芯片

    AI
    深蕾半导体
    发布于 :2025年11月12日 10:29:33

    如何让AIoT设备时刻“智商在线”?移AI太懂了!

    当前,AIoT产业正从“连接驱动”向“AI驱动”跨越,设备的自主“思考决策”能力已成为衡量场景落地价值的关键指标。而移通过技术创新与AI能力,让“大脑”真正“长”在了终端上,为行业破局提供了新思路
    的头像 发表于 10-31 19:07 261次阅读
    如何让AIoT设备时刻“智商在线”?移<b class='flag-5'>远</b><b class='flag-5'>AI</b>太懂了!

    声智科技AI翻译耳机重塑智能听觉体验

    在日益紧密的全球化浪潮中,跨语言沟通的障碍正在被前沿的声学AI技术逐步瓦解。声智AI翻译耳机,凭借深厚的声学AI积累,率先实现了“跨语种音色与情感复刻技术”在实时
    的头像 发表于 10-21 15:28 614次阅读
    声智科技<b class='flag-5'>AI</b><b class='flag-5'>翻译</b>耳机重塑智能听觉体验

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    AI被赋予了人的智能,科学家们希望在没有人类的引导下,AI自主的提出科学假设,诺贝尔奖级别的假设哦。 AI驱动科学被认为是科学发现的第五个范式了,与实验科学、理论科学、计算科学、数据驱
    发表于 09-17 11:45

    声智科技出席2025年北京市多语种AI语音翻译大赛

    8月20日,由北京市科委、中关村管委会主办,北京语言大学、北京第二外国语学院、北京市翻译协会、中国人工智能百人会共同承办的“2025年北京市多语种AI语音翻译大赛”在中关村展示中心顺利启幕。声智作为
    的头像 发表于 08-25 17:18 1021次阅读

    AI输出“偏见”,人类能否信任它的“三观”?

    人工智能(AI)已成为我们不可分割的“伙伴”。从聊天机器人、语音助手到自动翻译AI不断介入人与人之间的交流和理解。然而,它能做到“客观中立”吗?据美国《麻省理工科技评论》官网报道,一项国际研究指出
    的头像 发表于 08-04 13:43 1185次阅读
    <b class='flag-5'>AI</b>输出“偏见”,<b class='flag-5'>人类</b>能否信任它的“三观”?

    AI耳机变身翻译官+会议总结大师?涂鸦AI音频开发方案,让耳机升级到下一个level

    在接入AI能力后,耳机这种日常化的产品,能有多大的想象空间?它不仅能帮你轻松听懂全球外语和地方方言,还能将语音转化为文字、翻译成不同语言,甚至自动总结会议要点、生成思维导图,适配办公、学习、跨语言
    的头像 发表于 07-10 18:47 1476次阅读
    <b class='flag-5'>AI</b>耳机变身<b class='flag-5'>翻译</b>官+会议总结大师?涂鸦<b class='flag-5'>AI</b>音频开发方案,让耳机升级到下一个level

    通信全栈 AI 解决方案沙龙圆满收官,携手火山引擎共启消费品AI升级新征程

    。会上,移通信全栈AI解决方案与火山引擎豆包大模型、扣子AI硬件方案的协同应用成为焦点,与会嘉宾深入解析了抖音电商如何赋能精准营销,为泛AI
    的头像 发表于 04-30 18:35 645次阅读
    移<b class='flag-5'>远</b>通信全栈 <b class='flag-5'>AI</b> 解决方案沙龙圆满收官,携手火山引擎共启消费品<b class='flag-5'>AI</b>升级新征程

    通信携手高通举办“2025 高通边缘智能创新应用大赛”,助力开发者探索AI创新潜能

    随着边缘计算和端侧智能迅猛发展,以机器人和各类智能终端为代表的物理智能体正深刻重塑人类的生产生活方式。作为全球领先的物联网整体解决方案供应商,移通信积极赋能端侧AI,并依托全栈AI
    的头像 发表于 04-20 08:07 962次阅读
    移<b class='flag-5'>远</b>通信携手高通举办“2025 高通边缘智能创新应用大赛”,助力开发者探索<b class='flag-5'>AI</b>创新潜能

    通信×扣子:AI与硬件深度融合,加速AI智能体高效开发新生态

    3月22日,由扣子Coze与火山引擎联合主办的“扣子AI工坊·硬件专场”在深圳、北京、杭州、成都四城圆满落幕。作为Coze与火山引擎的重要合作伙伴,移通信受邀全程深度参与本次活动,携两大AI创新
    的头像 发表于 03-22 20:37 947次阅读
    移<b class='flag-5'>远</b>通信×扣子:<b class='flag-5'>AI</b>与硬件深度融合,加速<b class='flag-5'>AI</b>智能体高效开发新生态

    通信AI玩具整体解决方案全面升级:融合火山引擎RTC大模型,打造实时交互新体验

    一体,可为玩具的智能化升级提供从硬件、算法到平台的一站式服务。 移通信AI玩具整体解决方案率先支持火山引擎豆包RTC(实时音视频)大模型,现已全面具备市场交付能力。与基于webSocket协议的AI玩具方案
    发表于 02-21 09:50 500次阅读
    移<b class='flag-5'>远</b>通信<b class='flag-5'>AI</b>玩具整体解决方案全面升级:融合火山引擎RTC大模型,打造实时交互新体验

    AI助力实时翻译耳机

    你是否曾经因为语言障碍而无法与外国人顺畅交流?或者在旅行中因为语言不通而错过了一些精彩的经历?现在,随着AI技术的发展,实时翻译耳机可以帮你轻松解决这些问题。 1 什么是实时翻译耳机 实时翻译
    的头像 发表于 01-24 11:14 3274次阅读
    <b class='flag-5'>AI</b>助力实时<b class='flag-5'>翻译</b>耳机

    通信推出AI智能玩具解决方案

    为了满足玩具厂商日益增长的智能化升级需求,移通信近日宣布推出了一款针对玩具市场的AI智能解决方案。该方案旨在通过AI大模型的赋能,为传统玩具市场注入新的活力。 移通信的这款
    的头像 发表于 01-16 11:33 1293次阅读

    马斯克预言:AI将全面超越人类智力

    ,到2025年底之前,AI的智力水平将有望超越单个人类的智力。而到了2027年至2028年间,AI超越所有人类智力的可能性正在迅速增大。更令
    的头像 发表于 12-28 14:23 1159次阅读