0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于HT1621B段式液晶模块的驱动应用设计

电子设计 来源:网络整理 作者:工程师1 2018-05-25 03:48 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

段式液晶由于其功耗低、价格便宜在很多家电中得到广泛的应用,其驱动其实并不复杂,大多是情况下都是用HT1621B进行驱动。

HT1621是128 点内存映象和多功能的LCD驱动器HT1621 的软件配置特性使它适用于多种LCD应用场合包括LCD模块和显示子系统用于连接主控制器和HT1621的管脚只有4 或5 条HT1621 还有一个节电命令用于降低系统功耗。

在使用HT1621进行驱动时,首先得根据订做的液晶进行原理设置。驱动液晶实际上就是往HT1621的内部寄存器中写数据,至于数据如何去驱动液晶我们可以不去理会它。下面也一款订做的液晶为例进行说明:

资源分配如下,3个数码管每个数码管由7段组成,还有3个风速图标,4个温度图标和一个冒号图标。

我们知道HT1621是由4个COM口和18个Seg接口构成,COM口的连接和简单,直接对应连接即可,而Seg可以根据你的PCB布局、连线的方便等进行选择性连接。

在这里我们可以COM口对应连接,Seg端口按照顺序连接5~12脚,得到的图纸如下:

144924V43_0.png

有了这个原理图,后面我们就可以设计驱动程序了,在设计驱动程序之前,必须认识到一个问题,段式液晶是由很多段或者图标、点构成,从而构成的显示图 案。而这些多、图标、点都是由HT1621的寄存器中的位组成的,所以,如果驱动程序按照位进行控制,将给我很大的方便和灵活。

但是我们知道,除了C51提供位操作为,其他单片机并不提供位操作的定义方式,但是,基本上所有的编译器都提供位段的定义方式,所以下面我们将使用位段进行定义:

由原理图和液晶资料我们可以看出,Seg0对应第一个数码管的F、G、E三段,Seg1对应第一个数码管的A、B、C、D四段。而第二个数码管和第三个数码 管的每一段顺序与第一个相同。所以,我们可以使用与第一个数码管相同的结构体进行三个数码管的定义,当然有时候每个数码管的每一段顺序并不一定相同,这个 是由段式液晶在设计时的走线确定的。如果每一个数码的顺序不同,我们就得分别定义其结构体了。

typedef union

{

struct

{

u8 DA : 1; //

u8 DB : 1; //

u8 DC : 1; //

u8 DD : 1; //

u8 Rcv : 4; //

} BtL;

struct

{ //

u8 DF : 1; //

u8 DG : 1;

u8 DE : 1; //

u8 DO : 1; //

u8 Rcv : 4; //

} BtH;

} HTB_SEG;

在这里,我们把同一个数码管的7段定义在一个结构体中,如果使用F、G、E三个段式,我们使用BtH这个变量,如果使用A、B、C、D四段时,我们使用 BtL这个变量。当然,我们也可以把这两个分开定义。由于第二个数码管多了个冒号,同样把其放入BtH变量中,第一个和第三个数码管中没有使用这个位,不 用即可。

typedef union

{

struct

{

u8 K1 : 1; //

u8 K2 : 1; //

u8 K3 : 1; //

u8 Rcv : 5; //

} BtL;

struct

{

u8 K7 : 1; //

u8 K6 : 1; //

u8 K5 : 1; //

u8 K4 : 1; //

u8 Rcv : 4; //

} BtH;

} HTB_ICN;

用同样的方法定义剩余的图标,获得上面的结构体。由此我们看出,每个寄存器实际上只使用了前面4个位,后面的4个位没有使用,保留。

typedef struct

{

HTB_SEG Seg0;

HTB_SEG Seg1;

HTB_SEG Seg2;

HTB_SEG Seg3;

HTB_SEG Seg4;

HTB_SEG Seg5;

HTB_ICN Seg6;

HTB_ICN Seg7;

} HTB_RAM;

HTB_RAM HTBRam;

最后我们把使用的8个寄存器分别使用上面的结构体变量进行定义,前面6个为数码管,后面2个为图标。有了这个结构体,后面定义一个变量用于操作每个数码管。

数码管显示驱动如下,从0~9通过控制每一段形成字符:

/**************************************************************************************

* FunctionName : HTB_SegVal()

* Description : 数码管填值

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTB_SegVal(HTB_SEG *pSg1, HTB_SEG *pSg2, u8 dat)

{

switch (dat)

{

case 0: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 1;

pSg1-》BtH.DE = 1; pSg1-》BtH.DF = 1; pSg1-》BtH.DG = 0; break;

case 1: pSg2-》BtL.DA = 0; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 0;

pSg1-》BtH.DE = 0; pSg1-》BtH.DF = 0; pSg1-》BtH.DG = 0; break;

case 2: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 0; pSg2-》BtL.DD = 1;

pSg1-》BtH.DE = 1; pSg1-》BtH.DF = 0; pSg1-》BtH.DG = 1; break;

case 3: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 1;

pSg1-》BtH.DE = 0; pSg1-》BtH.DF = 0; pSg1-》BtH.DG = 1; break;

case 4: pSg2-》BtL.DA = 0; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 0;

pSg1-》BtH.DE = 0; pSg1-》BtH.DF = 1; pSg1-》BtH.DG = 1; break;

case 5: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 0; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 1;

pSg1-》BtH.DE = 0; pSg1-》BtH.DF = 1; pSg1-》BtH.DG = 1; break;

case 6: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 0; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 1;

pSg1-》BtH.DE = 1; pSg1-》BtH.DF = 1; pSg1-》BtH.DG = 1; break;

case 7: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 0;

pSg1-》BtH.DE = 0; pSg1-》BtH.DF = 0; pSg1-》BtH.DG = 0; break;

case 8: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 1;

pSg1-》BtH.DE = 1; pSg1-》BtH.DF = 1; pSg1-》BtH.DG = 1; break;

case 9: pSg2-》BtL.DA = 1; pSg2-》BtL.DB = 1; pSg2-》BtL.DC = 1; pSg2-》BtL.DD = 1;

pSg1-》BtH.DE = 0; pSg1-》BtH.DF = 1; pSg1-》BtH.DG = 1; break;

case 0: pSg2-》BtL.DA = 0; pSg2-》BtL.DB = 0; pSg2-》BtL.DC = 0; pSg2-》BtL.DD = 0;

pSg1-》BtH.DE = 0; pSg1-》BtH.DF = 0; pSg1-》BtH.DG = 0; break;

default:break;

}

}

/**************************************************************************************

* FunctionName : HTBColon()

* Description : 冒号

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTBColon(OS_SWT swt)

{

HTBRam.Seg2.BtH.DO = (swt 》 0) ? 1 : 0;

}

/**************************************************************************************

* FunctionName : HTBTemStl()

* Description : 温度

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTBTemStl(u8 stl)

{

HTBRam.Seg7.BtH.K4 = 0;

HTBRam.Seg7.BtH.K5 = 0;

HTBRam.Seg7.BtH.K6 = 0;

HTBRam.Seg7.BtH.K7 = 0;

switch (stl)

{

case 0: HTBRam.Seg7.BtH.K4 = 1; break;

case 1: HTBRam.Seg7.BtH.K5 = 1; break;

case 2: HTBRam.Seg7.BtH.K6 = 1; break;

case 3: HTBRam.Seg7.BtH.K7 = 1; break;

default : break;

}

}

/**************************************************************************************

* FunctionName : HTBWndStl()

* Description : 风速

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTBWndStl(u8 stl)

{

HTBRam.Seg6.BtL.K1 = 0;

HTBRam.Seg6.BtL.K2 = 0;

HTBRam.Seg6.BtL.K3 = 0;

switch (stl)

{

case 0: HTBRam.Seg6.BtL.K3 = 1; break;

case 1: HTBRam.Seg6.BtL.K2 = 1; break;

case 2: HTBRam.Seg6.BtL.K1 = 1; break;

default : break;

}

}

图标的驱动如上,其实就是根据需要修改每一个寄存器位,这个寄存器修改后,我们还必须得传递给HT1621更新显示,才能真正实现显示的驱动:

/**************************************************************************************

* FunctionName : HTB_SendBitMsb()

* Description : 发送发送多位[高位在前]

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTB_SendBitMsb(u8 dat, u8 cnt)

{

for (u8 i=0; i {

(dat & 0x80) ? GPIO_WriteHigh(HTB_DT_PORT, HTB_DT_PIN) :

GPIO_WriteLow(HTB_DT_PORT, HTB_DT_PIN);

dat 《《= 1;

GPIO_WriteLow(HTB_WR_PORT, HTB_WR_PIN);

HTB_DelayUs(3);

GPIO_WriteHigh(HTB_WR_PORT, HTB_WR_PIN);

}

}

/**************************************************************************************

* FunctionName : HTB_SendBitLsb()

* Description : 发送多位[低位在前]

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTB_SendBitLsb(u8 dat, u8 cnt)

{

for (u8 i=0; i {

(dat & 0x01) ? GPIO_WriteHigh(HTB_DT_PORT, HTB_DT_PIN) :

GPIO_WriteLow(HTB_DT_PORT, HTB_DT_PIN);

dat 》》= 1;

GPIO_WriteLow(HTB_WR_PORT, HTB_WR_PIN);

HTB_DelayUs(3);

GPIO_WriteHigh(HTB_WR_PORT, HTB_WR_PIN);

}

}

/**************************************************************************************

* FunctionName : HTB_SendCmd()

* Description : 发送命令

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTB_SendCmd(u8 cmd)

{

GPIO_WriteLow(HTB_CS_PORT, HTB_CS_PIN);

HTB_SendBitMsb(0x80, 3); // 前面3位命令代码

HTB_SendBitMsb(cmd, 9); // 后面10位: a5~a0[RAM地址]+d3~d0[RAM数据]

GPIO_WriteHigh(HTB_CS_PORT, HTB_CS_PIN);

}

/**************************************************************************************

* FunctionName : HTBSendNDat()

* Description : 发送N数据

* EntryParameter : None

* ReturnValue : None

**************************************************************************************/

void HTBSendNDat(u8 addr, u8 *pDat, u8 cnt, u8 bitNum)

{

GPIO_WriteLow(HTB_CS_PORT, HTB_CS_PIN);

HTB_SendBitMsb(0xA0, 3); // 前面3位命令代码

HTB_SendBitMsb(addr《《2, 6); // a5~a0[RAM地址]

for (u8 i=0; i {

HTB_SendBitLsb(*pDat++, bitNum); // RAM数据

}

GPIO_WriteHigh(HTB_CS_PORT, HTB_CS_PIN);

}

上面的函数是通过按位传递的方式把数据发给HT1621,并不复杂,这里就不相信介绍了:

typedef enum

{

HTB_CMD_BIAS = 0x29, // 0B:0010 abXc -ab控制占空比,-c控制偏压

HTB_CMD_SYSEN = 0x01, //

HTB_CMD_LCDOFF = 0x02, //

HTB_CMD_LCDON = 0x03, //

} HTB_CMD;

最后,我们可以看出,在修改了全局变量后,在把更新的数据传递给驱动芯片就可以了,非常简单方便灵活,这个示例让我们充分了解和使用位段进行位控制是非常方便。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 单片机
    +关注

    关注

    6074

    文章

    45340

    浏览量

    663482
  • LCD驱动器
    +关注

    关注

    1

    文章

    60

    浏览量

    13085
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    解析液晶模块的技术架构和关键作用

    在现代电子设备中,液晶屏(lcd screen)作为信息呈现的载体,其性能表现直接影响用户体验。然而,真正决定显示效果和可靠性的核心技术是LCM(LCD Module),即液晶模块。本文将深入探讨LCM的技术架构及其在显示领域的关键作用。
    的头像 发表于 12-05 17:08 817次阅读
    解析<b class='flag-5'>液晶模块</b>的技术架构和关键作用

    解码LCD液晶屏的关键技术指标

    在智能设备蓬勃发展的今天,液晶屏作为人机交互的核心界面,其性能直接决定了用户体验的优劣。无论是消费电子还是工业控制,对显示效果的要求都日益严苛。作为专业的液晶显示器制造商,我们深知,深入理解LCD的技术内涵,是做出正确选择与设计的基石。本文将系统性地解析决定
    的头像 发表于 11-18 10:46 624次阅读
    解码LCD<b class='flag-5'>液晶</b>屏的关键技术指标

    原厂 FZH1693 低功耗的字段式LCD显示驱动控制专用芯片

    特性描述 型号:FZH1693 FZH1693是一种低功耗的字段式LCD显示驱动控制专用芯片。它拥有52个SEG输出端、4个COM输出端,内置52×4=208bit的DDRAM存,采用2线(SCL
    发表于 11-05 09:42

    原厂 FZH1621 内存印象和多功能的LCD驱动

    一 概述 型号 :FZH1621厂商 :深圳市方中禾科技有限公司(Premier Chip Limited) FZH1621是内存映象和多功能的LCD驱动器,FZH1621的软件配置特
    发表于 11-03 10:09

    医疗仪器液晶驱动段码液晶驱动IC芯片VK1088B

    产品型号:VK1088B 产品品牌:永嘉微电/VINKA 封装形式:QFN32 (4mm×4mm) 产品年份:新年份 概述: VK1088B是一个点阵式存储映射的LCD驱动器,可支持最大88点
    发表于 08-11 16:24

    希恩凯电子液晶模组使用指南

    在智能设备蓬勃发展的今天,液晶屏作为人机交互的核心窗口,其性能与寿命至关重要。希恩凯电子(CNK),作为深耕显示技术领域的专精特新企业,不仅提供从0.96至15.6英寸的多样化标准液晶模块,更能根据您的特殊需求定制液晶屏解决方案
    的头像 发表于 07-04 16:34 798次阅读

    FZH1621 LCD驱动器中文手册

    深圳市方中禾科技有限公司的 FZH1621 是一款高度集成的多功能 LCD 驱动芯片,专为 LCD 模块和显示子系统设计,具有低功耗、高灵活性和易配置的特点。以下是其核心功能与技术亮点:主要特性宽
    发表于 05-23 10:27 0次下载

    防静电段码驱动省电液晶驱动芯片VKL076

    型号:VKL076 品牌:永嘉微电/VINKA 封装:SSOP28 年份:新年份 概述: VKL076是字段式液晶显示驱动芯片,VKL076是一个点阵式存储映射的LCD驱动器,可支持最
    发表于 05-14 17:42

    液晶驱动线路及其修复方法

    一、引言 液晶显示技术广泛应用于各类电子设备,而液晶驱动线路作为核心组件,承担着控制液晶分子偏转、实现图像显示的重要任务。随着显示技术不断升级,对
    的头像 发表于 04-29 16:25 646次阅读
    <b class='flag-5'>液晶</b><b class='flag-5'>驱动</b>线路及其修复方法

    中国液晶显示器厂商抢滩定制化赛道

    全球中小尺寸显示行业正掀起一场跨界革命。在医疗、工业控制与智能穿戴设备需求激增的驱动下,中国液晶显示器企业凭借定制液晶模块的创新突破,开辟出千亿级增量市场。2023年上半年,国内医疗设备用定制
    的头像 发表于 04-27 10:28 695次阅读

    激光焊接技术在PCB液晶模块中的应用

    在电子设备制造领域,PCB(Printed Circuit Board,印刷电路板)液晶模块的焊接质量对于产品性能至关重要。
    的头像 发表于 04-15 13:59 675次阅读
    激光焊接技术在PCB<b class='flag-5'>液晶模块</b>中的应用

    HT337B高效D类音频功率放大器中文手册

           HT337B是一款高效D类音频功率放大器。32V供电、THD+N=10%条件下,能够持续提供120WV/4Ω功率输出。     HT337B具有先进的扩频功能来抑制EMI,使用价格低廉
    发表于 04-02 15:38 0次下载

    爱普生S1C17M30/M40 MCU:段式LCD驱动与多功能集成的低功耗专家

    在现代电子设备中,液晶显示器(LCD)作为一种常见的显示技术,广泛应用于各种设备中。爱普生的S1C17M30/M40组MCU正是为满足需要段式LCD驱动和多功能集成的应用而设计的16位嵌入式
    的头像 发表于 03-14 14:05 806次阅读
    爱普生S1C17M30/M40 MCU:<b class='flag-5'>段式</b>LCD<b class='flag-5'>驱动</b>与多功能集成的低功耗专家

    点阵液晶控制器燃气表段码驱动芯片VK1621S

    控制器和驱动器系列: VK1024B 2.4V~5.2V 6seg4com 63 6*2 偏置电压1/2 1/3 S0P-16 VK1056B 2.4V~5.2V 14seg4com 143 14*2
    发表于 12-18 17:25

    电量显示液晶驱动小体积液晶驱动芯片VK1088B

    产品型号:VK1088B 产品品牌:永嘉微电/VINKA 封装形式:QFN32 (4mm×4mm) 产品年份:新年份 VK1088B概述: VK1088B 是一个22*4的LCD驱动
    发表于 12-09 17:27