0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人类制造的肉眼可见结构中首次看到量子纠缠

DPVg_AI_era 来源:未知 作者:胡薇 2018-04-29 17:36 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

据《科技日报》4 月 27 日报道,两个科研团队在 26 日出版的《自然》杂志上撰文指出,他们分别让仅为蜘蛛丝直径几倍的成对振动铝片、宽度可伸缩硅制梁发生了纠缠,将量子纠缠扩展到肉眼可见的领域,且纠缠时间更长,向构建量子互联网又迈出了一步。

两个科研团队在 26 日出版的《自然》杂志上撰文指出,他们分别让仅为蜘蛛丝直径几倍的成对振动铝片、宽度可伸缩硅制梁发生了纠缠,将量子纠缠扩展到肉眼可见的领域,且纠缠时间更长,向构建量子互联网又迈出了一步。

量子纠缠是量子力学的一个特性,指两个物体的属性相互交织,测量其中一个属性会立即揭示另一个的状态,即便两者距离遥远。但量子力学通常适用于原子、电子等微观粒子,而不适用于人们日常所见的较大物体。

芬兰阿尔托大学物理学家米卡 · 西兰帕(M. A. Sillanpää)的团队在实验中,让两个肉眼几乎可见、直径为 15 微米的圆形振动铝片发生了纠缠。每块铝片由约 1 万亿个原子组成,其像鼓面一样振动,并与在微腔内来回跳动的微波相互作用,微波就像乐队指挥,使两个鼓面的运动保持同步。

在以前的许多纠缠演示中,量子纠缠持续的时间较短,但新实验获得的量子纠缠持续了 30 分钟。西兰帕表示,这一量子纠缠理论上可以持续更长时间,“甚至永远进行下去”。

奥地利维也纳大学的洪孙坤(音译,Sungkun Hong)团队,也在实验中让 15 微米长的、部分宽度可伸缩硅制梁发生了纠缠。但他们没有使用微波,而是另辟蹊径,使用通常在光纤电信网络中传输的红外光。

洪孙坤说:“这是首次展示人造机械系统的纠缠,也是首次在人类制造的肉眼可见的结构中看到量子纠缠。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子力学
    +关注

    关注

    8

    文章

    101

    浏览量

    21914
  • 量子纠缠
    +关注

    关注

    0

    文章

    38

    浏览量

    10392

原文标题:Nature:科学家首次实现肉眼可见的量子纠缠

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国科学技术大学:实现纠缠增强纳米尺度单自旋量子传感

    中国科学技术大学与浙江大学合作,在纳米尺度量子精密测量领域取得进展,首次实现了噪声环境下纠缠增强的纳米尺度单自旋探测。 01 测量最基础的磁性单元 探测单个自旋,测量物质世界最基础的磁性单元,能够
    的头像 发表于 12-01 18:42 1394次阅读
    中国科学技术大学:实现<b class='flag-5'>纠缠</b>增强纳米尺度单自旋<b class='flag-5'>量子</b>传感

    案例分享|PPLN在频率片编码的纠缠量子密钥分发的应用

    简介:我们以前分享过《基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用》,探讨了PPLN在时间片QKD的应用。时间-能量纠缠虽是PPLN最基础的产生形式,但也可以通
    的头像 发表于 09-22 11:11 328次阅读
    案例分享|PPLN在频率片编码的<b class='flag-5'>纠缠</b><b class='flag-5'>量子</b>密钥分发<b class='flag-5'>中</b>的应用

    案例分享 | 基于Sagnac-ppln的宽光谱偏振纠缠光子源

    在之前的文章《案例分享|聚焦PPLN:1.48GHz通信波段纠缠光子源的技术创新与商业价值》,我们分享了英国Covesion公司展示的基于MgO:PPLN波导的纠缠光子演示装置(如下图)。在
    的头像 发表于 08-12 11:11 594次阅读
    案例分享 | 基于Sagnac-ppln的宽光谱偏振<b class='flag-5'>纠缠</b>光子源

    全球首颗电子光子量子一体化芯片问世:创新叩开量子实用化大门

    。这一成果标志着人类量子科技的征程迈出了坚实的一步,为未来量子技术的广泛应用奠定了基础。 ​ ​ 芯片的诞生:集成创新,突破传统 该芯片首次
    的头像 发表于 07-18 16:58 589次阅读

    案例分享 | 聚焦PPLN:1.48GHz通信波段纠缠光子源的技术创新与商业价值

    生成高速率的纠缠光子对的能力是量子密钥分发(QKD)和量子信息处理(QIP)系统的关键要求。QKD为安全社会提供了前景,包括保护关键信息、基础设施以及有价值的数据,例如国家的电网、水务等系统。而
    的头像 发表于 06-26 11:18 2934次阅读
    案例分享 | 聚焦PPLN:1.48GHz通信波段<b class='flag-5'>纠缠</b>光子源的技术创新与商业价值

    应用分享 | 精准生成和时序控制!AWG在确定性三量子比特纠缠光子源的应用

    丹麦哥本哈根大学最新研究利用任意波形发生器(AWG),成功构建保真度56%的确定性三量子比特GHZ态!AWG凭借精准的信号生成和时序控制能力,充分展现了其在量子态操控的强大能力。
    的头像 发表于 06-06 14:06 964次阅读
    应用分享 | 精准生成和时序控制!AWG在确定性三<b class='flag-5'>量子</b>比特<b class='flag-5'>纠缠</b>光子源<b class='flag-5'>中</b>的应用

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    电子发烧友网报道(文/李弯弯)量子计算是一种基于量子力学原理的新型计算模式,其核心在于利用量子比特的叠加态和纠缠态特性,实现远超经典计算机的并行计算能力。   何为
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b>计算最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆未来的指数级革命

    PanDao:光学设计制造风险管理

    是通过对其加工参数进行系统分析确定的。 1.简介 在光学制造技术,可预测且稳定的制造工艺对成本与质量进行可靠管理至关重要。本文阐述了针对特定光学元件与系统,如何来确定光学制造
    发表于 05-07 09:01

    当花粉“肉眼可见”:高光谱遥感技术如何破解城市过敏难题?

      一、引言 每年春季,北京天坛公园的圆柏花粉在春季形成“花粉暴”,引发公众对过敏问题的热议。这场“肉眼可见”的生态现象背后,暴露了传统花粉监测手段的不足——人工采样效率低、无法实时预警、难以区分
    的头像 发表于 04-12 16:32 657次阅读
    当花粉“<b class='flag-5'>肉眼</b><b class='flag-5'>可见</b>”:高光谱遥感技术如何破解城市过敏难题?

    量子技术最新进展 首款高精度量子纠缠光学滤波器问世 还有量子计算机运行十亿级AI微调大模型

    量子纠缠的光学滤波器。这一技术进展为开发紧凑且高性能的纠缠系统打下基础,这些系统可集成到量子光子电路,从而支持更加可靠的
    的头像 发表于 04-08 16:04 1337次阅读

    利用光子混合纠缠提高嘈杂条件下的传送质量

    在远距传物量子粒子或量子比特的状态被从一个位置传送到另一个位置,而不传送粒子本身。这种传输需要量子资源,例如一对额外的量子比特之间的
    的头像 发表于 02-18 06:17 448次阅读
    利用光子混合<b class='flag-5'>纠缠</b>提高嘈杂条件下的传送质量

    量子处理器的作用_量子处理器的优缺点

    量子处理器(QPU),又称量子级计算机处理器,是量子计算机的核心部件,其作用主要体现在以下几个方面:   一、高速计算与处理能力   
    的头像 发表于 01-27 13:44 1512次阅读

    可见光在电磁波谱的位置

    电磁波谱是一个连续的波谱,包含了从低频到高频的各种电磁波。可见光作为电磁波谱的一部分,对人类的视觉感知至关重要。 一、电磁波谱概述 电磁波谱是一系列不同波长的电磁波,按照波长或频率排列。从低频到
    的头像 发表于 01-20 16:38 5067次阅读

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用量子叠加态和纠缠
    的头像 发表于 12-19 15:53 2135次阅读

    量子通信的基本原理 量子通信网络的构建

    量子通信的基本原理 1. 量子叠加原理 量子叠加原理是量子通信的基础之一。在量子力学,一个
    的头像 发表于 12-19 15:50 3550次阅读