0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

麻省理工新神经网络芯片速度增6倍 功耗少94%

wg7H_MooreNEWS 来源:未知 作者:邓佳佳 2018-03-19 15:20 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

据MIT News报道,麻省理工学院(MIT)的研究人员开发出了一种可用于神经网络计算的高性能芯片,该芯片的处理速度可达其他处理器的7倍之多,而所需的功耗却比其他芯片少94-95%,未来这种芯片将有可能被使用在运行神经网络的移动设备或是物联网设备上。

MIT电子工程与计算科学研究生阿维谢克·碧斯沃斯(Avishek Biswas)是这个项目开发的领导者,他表示:“总体来说一般的处理器的运行模式是这样的,在芯片的一些部分里安放了内存,在进行计算的时候,它会在这些内存中来回移动数据。由于机器学习算法需要大量的算力,因此在来回移动数据的时候会消耗大量的能源。但是其实这些算法所做的计算可以被简化成一个种具体的操作,这种操作被称为点积(dot product)。我们的想法是,我们是否可以将这个点积功能部署在内存中,从而无需在不断的移动这些数据?”

这个芯片会将结点的输入值转化为电压,然后在进行储存和进一步处理的时候,再将其转换为数字形式。这种做法让这块芯片能够在一个步骤中同时对16个结点的点积进行计算,而且无需在内存和处理器之间移动数据。MIT News认为这种处理方法更加接近于人类大脑的工作方式。

神经网络

碧斯沃斯将会在一篇论文中详细阐述这块芯片的工作方式,这篇论文将会在国际固态电路大会期间发表,和他一起撰写论文的还有他的论文指导老师,MIT工程学院院长阿南莎·钱德拉卡珊(Anantha Chandrakasan)以及MIT电子工程与计算机科学教授范内瓦·布什(Vannevar Bush)。

去年12月,SensibleVision公司CEO乔治·布罗斯托夫(George Brostoff)在曾经在《生物学更新(Biometric Update)》发表了一篇客座文章,证明了定制化处理器有可能会给移动设备的安全识别功能带来巨大的变革。那以后,FWDNXT也宣布他们将会开发使用深度神经网络进行图像识别与归类的低功耗处理器,此外ARM也宣布将会开发用于机器学习和物体识别的芯片。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106808

原文标题:淘汰CPU!新神经芯片速度增6倍 功耗少94%

文章出处:【微信号:MooreNEWS,微信公众号:摩尔芯闻】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 708次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    AI芯片不仅包括深度学细AI加速器,还有另外一个主要列别:类脑芯片。类脑芯片是模拟人脑神经网络架构的芯片。它结合微电子技术和新型
    发表于 09-17 16:43

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 892次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    无刷电机小波神经网络转子位置检测方法的研究

    MATLAB/SIMULINK工具对该方法进行验证,实验结果表明该方法在全程速度下效果良好。 纯分享帖,点击下方附件免费获取完整资料~~~ *附件:无刷电机小波神经网络转子位置检测方法的研究.pdf
    发表于 06-25 13:06

    神经网络RAS在异步电机转速估计中的仿真研究

    众多方法中,由于其结构简单,稳定性好广泛受到人们的重视,且已被用于产品开发。但是MRAS仍存在在低速区速度估计精度下降和对电动机参数变化非常敏感的问题。本文利用神经网络的特点,使估计更为简单、快速
    发表于 06-16 21:54

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1324次阅读

    如何优化BP神经网络的学习率

    训练过程中发生震荡,甚至无法收敛到最优解;而过小的学习率则会使模型收敛速度缓慢,容易陷入局部最优解。因此,正确设置和调整学习率对于训练高效、准确的神经网络模型至关重要。 二、学习率优化算法 梯度下降法及其变种 : 标准梯
    的头像 发表于 02-12 15:51 1433次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1597次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1358次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1529次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 848次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2264次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法