0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用 Python 实现一个大数据搜索引擎

马哥Linux运维 来源:未知 作者:邓佳佳 2018-03-06 17:26 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

前言

搜索是大数据领域里常见的需求。Splunk和ELK分别是该领域在非开源和开源领域里的领导者。本文利用很少的Python代码实现了一个基本的数据搜索功能,试图让大家理解大数据搜索的基本原理。

布隆过滤器 (Bloom Filter)

第一步我们先要实现一个布隆过滤器。

布隆过滤器是大数据领域的一个常见算法,它的目的是过滤掉那些不是目标的元素。也就是说如果一个要搜索的词并不存在与我的数据中,那么它可以以很快的速度返回目标不存在。

让我们看看以下布隆过滤器的代码:

classBloomfilter(object):

A Bloom filter is a probabilistic data-structure that trades space for accuracy

when determining if a value is in a set.It can tell you if a value was possibly

added, or if it was definitely not added, but it can't tell you for certain that

it was added.

"""

def __init__(self,size):

"""Setup the BF with the appropriate size"""

self.values = [False] * size

self.size = size

def hash_value(self,value):

"""Hash the value provided and scale it to fit the BF size"""

returnhash(value) % self.size

def add_value(self,value):

"""Add a value to the BF"""

h = self.hash_value(value)

self.values[h] = True

def might_contain(self,value):

"""Check if the value might be in the BF"""

h = self.hash_value(value)

returnself.values[h]

def print_contents(self):

"""Dump the contents of the BF for debugging purposes"""

print self.values

基本的数据结构是个数组(实际上是个位图,用1/0来记录数据是否存在),初始化是没有任何内容,所以全部置False。实际的使用当中,该数组的长度是非常大的,以保证效率。

利用哈希算法来决定数据应该存在哪一位,也就是数组的索引

当一个数据被加入到布隆过滤器的时候,计算它的哈希值然后把相应的位置为True

当检查一个数据是否已经存在或者说被索引过的时候,只要检查对应的哈希值所在的位的True/Fasle

看到这里,大家应该可以看出,如果布隆过滤器返回False,那么数据一定是没有索引过的,然而如果返回True,那也不能说数据一定就已经被索引过。在搜索过程中使用布隆过滤器可以使得很多没有命中的搜索提前返回来提高效率。

我们看看这段 code是如何运行的:

bf = Bloomfilter(10)

bf.add_value('dog')

bf.add_value('fish')

bf.add_value('cat')

bf.print_contents()

bf.add_value('bird')

bf.print_contents()

# Note: contents are unchanged after adding bird - it collides

forterm in['dog','fish','cat','bird','duck','emu']:

print'{}: {} {}'.format(term,bf.hash_value(term),bf.might_contain(term))

结果:

[False,False,False,False,True,True,False,False,False,True]

[False,False,False,False,True,True,False,False,False,True]

dog: 5True

fish: 4True

cat: 9True

bird: 9True

duck: 5True

emu: 8False

首先创建了一个容量为10的的布隆过滤器

然后分别加入 ‘dog’,‘fish’,‘cat’三个对象,这时的布隆过滤器的内容如下:

然后加入‘bird’对象,布隆过滤器的内容并没有改变,因为‘bird’和‘fish’恰好拥有相同的哈希。

最后我们检查一堆对象(’dog’, ‘fish’, ‘cat’, ‘bird’, ‘duck’, ’emu’)是不是已经被索引了。结果发现‘duck’返回True,2而‘emu’返回False。因为‘duck’的哈希恰好和‘dog’是一样的。

分词

下面一步我们要实现分词。 分词的目的是要把我们的文本数据分割成可搜索的最小单元,也就是词。这里我们主要针对英语,因为中文的分词涉及到自然语言处理,比较复杂,而英文基本只要用标点符号就好了。

下面我们看看分词的代码:

def major_segments(s):

"""

Perform major segmenting on a string.Split the string by all of the major

breaks, and return the set of everything found.The breaks in this implementation

are single characters, but in Splunk proper they can be multiple characters.

A set is used because ordering doesn't matter, and duplicates are bad.

"""

major_breaks = ' '

last = -1

results = set()

# enumerate() will give us (0, s[0]), (1, s[1]), ...

foridx,ch inenumerate(s):

ifch inmajor_breaks:

segment = s[last+1:idx]

results.add(segment)

last = idx

# The last character may not be a break so always capture

# the last segment (which may end up being "", but yolo)

segment = s[last+1:]

results.add(segment)

returnresults

主要分割

主要分割使用空格来分词,实际的分词逻辑中,还会有其它的分隔符。例如Splunk的缺省分割符包括以下这些,用户也可以定义自己的分割符。

] < >( ) { } | ! ; , ‘ ” * s & ? + %21 %26 %2526 %3B %7C %20 %2B %3D — %2520 %5D %5B %3A %0A %2C %28 %29

def minor_segments(s):

"""

Perform minor segmenting on a string.This is like major

segmenting, except it also captures from the start of the

input to each break.

"""

minor_breaks = '_.'

last = -1

results = set()

foridx,ch inenumerate(s):

ifch inminor_breaks:

segment = s[last+1:idx]

results.add(segment)

segment = s[:idx]

results.add(segment)

last = idx

segment = s[last+1:]

results.add(segment)

results.add(s)

returnresults

次要分割

次要分割和主要分割的逻辑类似,只是还会把从开始部分到当前分割的结果加入。例如“1.2.3.4”的次要分割会有1,2,3,4,1.2,1.2.3

def segments(event):

"""Simple wrapper around major_segments / minor_segments"""

results = set()

formajor inmajor_segments(event):

forminor inminor_segments(major):

results.add(minor)

returnresults

分词的逻辑就是对文本先进行主要分割,对每一个主要分割在进行次要分割。然后把所有分出来的词返回。

我们看看这段 code是如何运行的:

forterm insegments('src_ip = 1.2.3.4'):

print term

src

1.2

1.2.3.4

src_ip

3

1

1.2.3

ip

2

=

4

搜索

好了,有个分词和布隆过滤器这两个利器的支撑后,我们就可以来实现搜索的功能了。

上代码:

classSplunk(object):

def __init__(self):

self.bf = Bloomfilter(64)

self.terms = {}# Dictionary of term to set of events

self.events = []

def add_event(self,event):

"""Adds an event to this object"""

# Generate a unique ID for the event, and save it

event_id = len(self.events)

self.events.append(event)

# Add each term to the bloomfilter, and track the event by each term

forterm insegments(event):

self.bf.add_value(term)

ifterm notinself.terms:

self.terms[term] = set()

self.terms[term].add(event_id)

def search(self,term):

"""Search for a single term, and yield all the events that contain it"""

# In Splunk this runs in O(1), and is likely to be in filesystem cache (memory)

ifnotself.bf.might_contain(term):

return

# In Splunk this probably runs in O(log N) where N is the number of terms in the tsidx

ifterm notinself.terms:

return

forevent_id insorted(self.terms[term]):

yield self.events[event_id]

Splunk代表一个拥有搜索功能的索引集合

每一个集合中包含一个布隆过滤器,一个倒排词表(字典),和一个存储所有事件的数组

当一个事件被加入到索引的时候,会做以下的逻辑

为每一个事件生成一个unqie id,这里就是序号

对事件进行分词,把每一个词加入到倒排词表,也就是每一个词对应的事件的id的映射结构,注意,一个词可能对应多个事件,所以倒排表的的值是一个Set。倒排表是绝大部分搜索引擎的核心功能。

当一个词被搜索的时候,会做以下的逻辑

检查布隆过滤器,如果为假,直接返回

检查词表,如果被搜索单词不在词表中,直接返回

在倒排表中找到所有对应的事件id,然后返回事件的内容

我们运行下看看把:

s = Splunk()

s.add_event('src_ip = 1.2.3.4')

s.add_event('src_ip = 5.6.7.8')

s.add_event('dst_ip = 1.2.3.4')

forevent ins.search('1.2.3.4'):

print event

print'-'

forevent ins.search('src_ip'):

print event

print'-'

forevent ins.search('ip'):

print event

src_ip = 1.2.3.4

dst_ip = 1.2.3.4

-

src_ip = 1.2.3.4

src_ip = 5.6.7.8

-

src_ip = 1.2.3.4

src_ip = 5.6.7.8

dst_ip = 1.2.3.4

是不是很赞!

更复杂的搜索

更进一步,在搜索过程中,我们想用And和Or来实现更复杂的搜索逻辑。

上代码:

classSplunkM(object):

def __init__(self):

self.bf = Bloomfilter(64)

self.terms = {}# Dictionary of term to set of events

self.events = []

def add_event(self,event):

"""Adds an event to this object"""

# Generate a unique ID for the event, and save it

event_id = len(self.events)

self.events.append(event)

# Add each term to the bloomfilter, and track the event by each term

forterm insegments(event):

self.bf.add_value(term)

ifterm notinself.terms:

self.terms[term] = set()

self.terms[term].add(event_id)

def search_all(self,terms):

"""Search for an AND of all terms"""

# Start with the universe of all events...

results = set(range(len(self.events)))

forterm interms:

# If a term isn't present at all then we can stop looking

ifnotself.bf.might_contain(term):

return

ifterm notinself.terms:

return

# Drop events that don't match from our results

results = results.intersection(self.terms[term])

forevent_id insorted(results):

yield self.events[event_id]

def search_any(self,terms):

"""Search for an OR of all terms"""

results = set()

forterm interms:

# If a term isn't present, we skip it, but don't stop

ifnotself.bf.might_contain(term):

continue

ifterm notinself.terms:

continue

# Add these events to our results

results = results.union(self.terms[term])

forevent_id insorted(results):

yield self.events[event_id]

利用Python集合的intersection和union操作,可以很方便的支持And(求交集)和Or(求合集)的操作。

运行结果如下:

s = SplunkM()

s.add_event('src_ip = 1.2.3.4')

s.add_event('src_ip = 5.6.7.8')

s.add_event('dst_ip = 1.2.3.4')

forevent ins.search_all(['src_ip','5.6']):

print event

print'-'

forevent ins.search_any(['src_ip','dst_ip']):

print event

src_ip = 5.6.7.8

-

src_ip = 1.2.3.4

src_ip = 5.6.7.8

dst_ip = 1.2.3.4

总结

以上的代码只是为了说明大数据搜索的基本原理,包括布隆过滤器,分词和倒排表。如果大家真的想要利用这代码来实现真正的搜索功能,还差的太远。所有的内容来自于Splunk Conf2017。大家如果有兴趣可以去看网上的视频。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • python
    +关注

    关注

    57

    文章

    4858

    浏览量

    89609

原文标题:用 Python 实现一个大数据搜索引擎

文章出处:【微信号:magedu-Linux,微信公众号:马哥Linux运维】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    5分钟了解SEO优化服务器对网站加载速度的影响

    为SEO优化过的服务器,能显著提升网站性能,从而在搜索引擎排名中占据有利位置。
    的头像 发表于 12-02 10:27 125次阅读

    根据标题获取商品链接评论接口的技术实现

    [调用评论API] F -- > G[数据清洗存储]   关键组件说明: 搜索引擎接口 :通过电商平台开放API实现标题搜索 $$ text{API}_{search} = text{
    的头像 发表于 10-20 16:03 461次阅读
    根据标题获取商品链接评论接口的技术<b class='flag-5'>实现</b>

    5关键技巧让你的超声波清洗设备更高效

    。因此,了解如何提高超声波清洗设备的效率至关重要。本文将分享五关键技巧,帮助您实现最佳清洗效果,提升清洁效率,同时也吸引搜索引擎的关注。1.选择合适的清洗液清洗
    的头像 发表于 08-20 16:29 482次阅读
    5<b class='flag-5'>个</b>关键技巧让你的超声波清洗设备更高效

    地平线余凯谈AI时代产品方法论

    互联网时代,商业逻辑始终围绕“连接”与“理解人”展开。从搜索引擎、社交平台再到短视频应用,都在通过用户行为数据揣摩人类偏好,优化服务体验。
    的头像 发表于 06-03 11:44 743次阅读

    BK1661 单频多模 低功耗定位芯片

    GNSS部分 - 120 跟踪通道以及专用的搜索引擎 - L1频点支持GPS L1, Beidou B1, Galileo E1, QZSS L1, GLONASS G1 - 冷启动灵敏度
    发表于 03-10 09:18

    国产之光!中达瑞和获DEEPSEEK认证:国产光谱相机领导品牌

    2025年,AI行业极度火爆,Deepseek几乎成为全球的焦点,它是款基于人工智能技术的新搜索引擎,专注于为用户提供更精准、更智能的搜索体验。与传统的
    的头像 发表于 02-17 11:01 669次阅读

    微软面临法国反垄断机构调查

    依赖必应(Bing)搜索数据的小型搜索引擎提供劣质搜索结果,从而对这些小型搜索引擎的业务发展造成不利影响。这
    的头像 发表于 02-11 10:57 891次阅读

    OpenAI免费开放ChatGPT搜索功能

    近日,OpenAI宣布了项重大决策:向所有用户免费开放ChatGPT搜索功能。这举措无疑将为用户带来更加高效、智能的搜索体验。 与谷歌等传统搜索
    的头像 发表于 02-06 14:35 817次阅读

    LZO Data Compression,高性能LZO无损数据压缩加速器介绍,FPGA&amp;ASIC

    的AXI-Stream数据总线(128-bit数据宽度) 经典性能指标:1.1Gbps压缩速率@1搜索引擎@200MHz内核时钟2.16Gbps压缩速率@16
    发表于 01-24 23:53

    使用Python实现xgboost教程

    使用Python实现XGBoost模型通常涉及以下几个步骤:数据准备、模型训练、模型评估和模型预测。以下是详细的教程,指导你如何在
    的头像 发表于 01-19 11:21 2240次阅读

    创建唯索引的SQL命令和技巧

    在创建唯索引时,以下是些SQL命令和技巧,可以帮助优化性能: 使用合适的索引类型:对于需要保证唯性的列,使用UNIQUE
    的头像 发表于 01-09 15:21 808次阅读

    javascript:void(0) 是否影响SEO优化

    使用 javascript:void(0) 确实可能对SEO优化产生负面影响 。以下是关于 javascript:void(0) 对SEO影响的具体分析: 搜索引擎爬虫的理解问题 搜索引擎爬虫(如
    的头像 发表于 12-31 16:08 990次阅读

    HTTP 协议对于SEO优化的影响

    搜索引擎优化(SEO)是提高网站在搜索引擎中的可见性和排名的过程。HTTP协议作为互联网通信的基础,对SEO有着深远的影响。 1. HTTP状态码 HTTP状态码是服务器响应客户端请求的结果。这些
    的头像 发表于 12-30 09:29 996次阅读

    苹果为谷歌支付数十亿美元辩护,参与搜索案反垄断审判

    亿美元。 在周于华盛顿提交的法庭文件中,苹果的律师明确表示,公司不能依赖谷歌来维护这协议。他们强调,无论谷歌是否继续支付这笔费用,苹果都没有打算建立自己的搜索引擎来与谷歌竞争。这
    的头像 发表于 12-26 10:41 728次阅读

    Mybatis 拦截器实现数据源内多数据库切换

    数据库 现在需要上线报表服务来查询所有数据库中的数据进行统计,那么现在的问题来了,该如何 满足在配置个数据源的情况下来查询该
    的头像 发表于 12-12 10:23 1606次阅读