0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

还不错!装有移动设备和嵌入式设备的神经网络机器学习软件

电子工程师 来源:未知 作者:李建兵 2018-03-06 09:26 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

Arm NN

最近,Arm宣布推出神经网络机器学习(ML) 软件 Arm NN。这项关键性技术,可在基于 Arm 的高能效平台上轻松构建和运行机器学习应用程序。

实际上,该软件桥接了现有神经网络框架(例如 TensorFlow 或 Caffe)与在嵌入式 Linux 平台上运行的底层处理硬件(例如 CPUGPU 或新型 Arm 机器学习处理器)。这样,开发人员能够继续使用他们首选的框架和工具,经 Arm NN 无缝转换结果后可在底层平台上运行。

机器学习需要一个训练阶段,也就是学习阶段(“这些是猫的图片”),另外还需要一个推理阶段,也就是应用所学的内容(“这是猫的图片吗?”)。训练目前通常在服务器或类似设备上发生,而推理则更多地转移到网络边缘,这正是新版本 Arm NN 的重点所在。

一切围绕平台

机器学习工作负载的特点是计算量大、需要大量存储器带宽,这正是移动设备和嵌入式设备面临的最大挑战之一。随着运行机器学习的需求日益增长,对这些工作负载进行分区变得越来越重要,以便充分利用可用计算资源。软件开发人员面临的可能是很多不同的平台,这就带来一个现实问题:CPU 通常包含多个内核(在 Arm DynamIQ big.LITTLE 中,甚至还有多种内核类型),还要考虑 GPU,以及许多其他类型的专用处理器,包括 Arm 机器学习处理器,这些都是整体解决方案的一部分。Arm NN 这时就能派上用场。

下图中可以看出,Arm NN 扮演了枢纽角色,既隐藏了底层硬件平台的复杂性,同时让开发人员能够继续使用他们的首选神经网络框架。

使用机器学习的应用程序 需要机器学习的已编写应用程序
TensorFlow、Caffe 等 继续使用现有的高级别机器学习框架和支持工具
Arm NN 自动将上述格式转换为 Arm NN,优化图表,并使用 Compute Library 中的函数,使其面向目标硬件
Compute Library 低级别的机器学习函数,针对各种硬件内核(目前为 Cortex-A 和 Mali GPU)进行了优化
CMSIS-NN 低级别 NN 函数,针对 Cortex-M CPU 进行了优化
平台 包含多个内核和内核类型(例如 CPU、GPU,今后还有 Arm 机器学习处理器)

Arm NN SDK 概览(首次发布版本)

您可能已经注意到,Arm NN 的一个关键要求是Compute Library,它包含一系列低级别机器学习和计算机视觉函数,面向Arm Cortex-ACPU 和Arm Mali GPU。我们的目标是让这个库汇集针对这些函数的一流优化,近期的优化已经展示了显著的性能提升 – 比同等 OpenCV 函数提高了 15 倍甚至更多。如果您是Cortex-MCPU 的用户,现在还有一个机器学习原语库 – 也就是近期发布的CMSIS-NN。

CMSIS-NN 是一系列高效神经网络内核的集合,其开发目的是最大程度地提升神经网络的性能,减少神经网络在面向智能物联网边缘设备的 Arm Cortex-M 处理器内核上的内存占用。Arm开发这个库的目的是全力提升这些资源受限的 Cortex CPU 上的神经网络推理性能。借助基于 CMSIS-NN 内核的神经网络推理,运行时/吞吐量和能效可提升大约 5 倍。

主要优势

有了 Arm NN,开发人员可以即时获得一些关键优势:

更轻松地在嵌入式系统上运行 TensorFlow 和 Caffe

Compute Library 内部的一流优化函数,让用户轻松发挥底层平台的强大性能

无论面向何种内核类型,编程模式都是相同的

现有软件能够自动利用新硬件特性

与 Compute Library 相同,Arm NN 也是作为开源软件发布的,这意味着它能够相对简单地进行扩展,从而适应 Arm 合作伙伴的其他内核类型。

适用于 Android 的 Arm NN

在五月举行的 Google I/O 年会上,Google 发布了针对 Android 的 TensorFlow Lite,预示着主要新型 API 开始支持在基于 Arm 的 Android 平台上部署神经网络。表面上,这与 Android 下的 Arm NN SDK 解决方案非常相似。使用 NNAPI 时,机器学习工作负载默认在 CPU 上运行,但硬件抽象层 (HAL) 机制也支持在其他类型的处理器或加速器上运行这些工作负载。Google 发布以上消息的同时,我们的 Arm NN 计划也进展顺利,这是为使用 Arm NN 的 Mali GPU 提供 HAL。今年晚些时候,我们还将为 Arm 机器学习处理器提供硬件抽象层。

Arm 对 Google NNAPI 的支持概览

Arm NN 的未来发展

这只是 Arm NN 的第一步:我们还计划添加其他高级神经网络作为输入,对 Arm NN 调试程序执行进一步的图形级别优化,覆盖其他类型的处理器或加速器……请密切关注今年的发展!

⊙Cortex-M与机器学习|神经网络教会小怪物走路

⊙机器学习让拍照更智能|Arm与Facebook、Arcsoft合作开发更高性能的移动设备技术

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 嵌入式
    +关注

    关注

    5186

    文章

    20145

    浏览量

    328742

原文标题:Arm NN:在移动和嵌入式设备上无缝构建和运行机器学习应用程序

文章出处:【微信号:Ithingedu,微信公众号:安芯教育科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    ARM嵌入式这样学

    )话题大热,Arm也推出神经网络机器学习软件 Arm NN,可在基于Arm的高能效平台上轻松构建和运行机器
    发表于 12-04 07:48

    嵌入式开发的关键点介绍

    设备移动设备。因此,嵌入式开发需要考虑系统的功耗,并编写节能的代码以延长系统的使用寿命。 4. 软件集成:
    发表于 11-13 08:12

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“神经网络”、“黑箱”、“标注”等术语。这些概念对非专业
    的头像 发表于 09-10 17:38 678次阅读
    如何在<b class='flag-5'>机器</b>视觉中部署深度<b class='flag-5'>学习</b><b class='flag-5'>神经网络</b>

    嵌入式开发入门指南:从零开始学习嵌入式

    开发(设备驱动、内核编译) 4. 推荐的学习资源书籍:《嵌入式系统软件设计基础》《ARM Cortex-M系列嵌入式开发》在线课程:慕课网、
    发表于 05-15 09:29

    嵌入式软件行业增长驱动因素

    嵌入式软件在物联网应用中至关重要,因为它管理设备操作、控制传感器、支持连接并确保数据安全。例如,在智能家居中,恒温器、安全摄像头和灯光等设备使用嵌入
    的头像 发表于 05-09 11:26 665次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1305次阅读

    如何优化BP神经网络学习

    优化BP神经网络学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性
    的头像 发表于 02-12 15:51 1421次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析
    的头像 发表于 02-12 15:36 1570次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络学习算法。该算法通过计算每层网络的误差,并将这
    的头像 发表于 02-12 15:18 1273次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度
    的头像 发表于 02-12 15:15 1339次阅读

    嵌入式机器学习的应用特性与软件开发环境

    设备和智能传感器)上,这些设备通常具有有限的计算能力、存储空间和功耗。本文将您介绍嵌入式机器学习的应用特性,以及常见的
    的头像 发表于 01-25 17:05 1209次阅读
    <b class='flag-5'>嵌入式</b><b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与<b class='flag-5'>软件</b>开发环境

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,
    的头像 发表于 01-23 13:52 838次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工
    的头像 发表于 01-09 10:24 2243次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    在边缘设备上设计和部署深度神经网络的实用框架

    ‍‍‍‍ 机器学习和深度学习应用程序正越来越多地从云端转移到靠近数据源头的嵌入式设备。随着边缘计算市场的快速扩张,多种因素正在推动边缘人工智
    的头像 发表于 12-20 11:28 1389次阅读