0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

迈向27.51%效率,非晶/微晶材料在HBC太阳能电池中的应用

美能光伏 2024-11-14 01:07 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

太阳能光伏行业正寻求通过创新制造工艺、新型材料、太阳能电池设计和模块配置来提高模块性能。SHJ 太阳能电池具高 PCE、简化制造工艺和低制造成温等优点,但存在Jsc较低和原材料成本较高等局限,IBC技术有望提升硅太阳能电池PCE。SHJ太阳能电池利用非晶硅层进行有效钝化,并通过掺杂的非晶硅层形成钝化接触。

SHJ太阳能电池和SHJ-IBC太阳能电池

cde3ad86-a1e1-11ef-8084-92fbcf53809c.png

两种太阳能电池的结构示意图

SHJ太阳能电池结构:从上到下的结构依次为:银/ITO/(n+i)层/(n) c-Si/(i+p)层/ITO/银。其中,银(Ag)作为电极材料,ITO(氧化铟锡)作为透明导电氧化物层。(n+i)层表示n型掺杂的非晶硅层与本征非晶硅层的组合,(n) c-Si表示n型掺杂的晶体硅层,(i+p)层表示本征非晶硅层与p型掺杂的非晶硅层的组合。这种结构利用非晶硅层进行有效钝化,并通过掺杂的非晶硅层形成钝化接触,以提高电池的效率SHJ-IBC太阳能电池结构:电池背面分为三个区域:ESC、HSC和一个分隔它们的间隙。在SHJ-IBC太阳能电池中,电子选择性接触(ESC)空穴选择性接触(HSC)都位于电池的背面,这有助于减少前表面的遮挡,提高光的利用率

cded771c-a1e1-11ef-8084-92fbcf53809c.png

数字孪生中使用的参数

这些参数对于准确模拟SHJ太阳能电池的性能至关重要,因为它们影响载流子的传输复合和电池的整体效率。通过精确设置这些参数,研究人员可以创建出能够准确反映实际电池性能的数字孪生体,进而评估和优化电池设计。

接触电阻模拟

评估具有非晶硅(p-a-Si:H)和纳米晶硅(p-nc-Si:H)空穴选择性接触(HSC)层的SHJ太阳能电池在最大功率点(MPP)的功率损失

ce0efe96-a1e1-11ef-8084-92fbcf53809c.png

SHJ太阳能电池在最大功率点(MPP)的功率损失和系列电阻的分析

功率损耗分析:对比了具有 p - a - Si:H 空穴选择接触(HSC)层和 p - nc - Si:H HSC 层的 SHJ 太阳能电池在最大功率点处的功率损耗情况,表明电池性能增强主要源于背面 HSC 层串联电阻构成:Rs 分解为多个组成部分,包括体相内部的本征成分、前后表面透明导电氧化物(TCO)和电极指区域的载流子传输电阻以及电子选择接触(ESC)和 HSC 的接触电阻率(ρESC 和 ρHSC)。

图中可看出 ρESC 虽略有降低但变化不大,而 ρHSC102 降至 4mΩ cm²,显著减小,这表明在提升电池性能方面,降低 HSC 层接触电阻率具有重要意义。

ce279fdc-a1e1-11ef-8084-92fbcf53809c.png

SHJ太阳能电池接触电阻率(ρC)模拟

TLM模拟结构示意图:这个结构包括两个相同的接触堆叠,每个宽度为1000微米,位于c-Si基底上,并通过可变间隙隔开。

J-V特性曲线:在暗条件下(电压范围为-0.2至0.2伏特)对不同接触垫间距的电子选择性接触(ESC)进行评估的J-V(电流-电压)特性曲线。这些曲线用于计算接触电阻率ρC。

不同接触垫间距的总电阻RT:不同接触垫间距下ESC的总电阻RT,这些数据用于通过TLM方法计算接触电阻率ρC。

接触电阻率ρC的计算:图中可以计算接触电阻率ρC,使用公式ρC = RC - LT / W,其中RC是接触电阻的一半,LT是有效转移长度的一半,W是TLM模拟中默认的接触长度(1微米)。

掺杂浓度对接触电阻率的影响:通过TLM模拟确定的p层的掺杂浓度,图中突出显示了p-a-Si:H HSC和p-nc-Si:H HSC的点。通过增加掺杂浓度,可以显著降低ρHSC。

ce3b6b34-a1e1-11ef-8084-92fbcf53809c.png

SHJ太阳能电池数字孪生体的电气性能比较

短路电流:使用p-nc-Si:H HSC的太阳能电池的Jsc略高于使用p-a-Si:H HSC的电池,这表明纳米晶硅层可以提高电池的短路电流。

开路电压:p-nc-Si:H HSC的太阳能电池的Voc也略高于p-a-Si:H HSC的电池,这可能是由于纳米晶硅层更好的载流子选择性,减少了载流子的复合损失。

填充因子:p-nc-Si:H HSC的太阳能电池的FF同样略高于p-a-Si:H HSC的电池,这表明纳米晶硅层可以提高电池的整体性能。

功率转换效率:p-nc-Si:H HSC的太阳能电池的PCE高于p-a-Si:H HSC的电池,这与Jsc、Voc和FF的提高相一致。

与LONGi太阳能电池的比较:数字孪生体的模拟结果与LONGi公司的实验结果非常接近,这验证了数字孪生体模型的准确性和可靠性。

使用纳米晶硅(p-nc-Si:H)作为HSC层的SHJ太阳能电池在电气性能上优于使用非晶硅(p-a-Si:H)的电池。

SHJ和SHJ-IBC太阳能电池的数字孪生体创建

ce62c670-a1e1-11ef-8084-92fbcf53809c.pngSHJ-IBC太阳能电池的电气性能

HSC宽度与VOC的关系:随着HSC宽度的增加,开路电压(VOC)提高。使用p-nc-Si:H HSC的电池相比使用p-a-Si:H HSC的电池展现出更高的VOC,这归因于p-nc-Si:H更高的掺杂浓度,导致在c-Si中的能带弯曲更强,复合损失减少。HSC宽度与FF的关系:填充因子(FF)随着HSC宽度的增加而提高。p-nc-Si:H HSC的电池由于其更高的载流子收集能力,相比p-a-Si:H HSC的电池展现出更高的FF。HSC宽度与JSC的关系:短路电流(JSC)随着HSC宽度的增加而提高。减少的复合损失和增强的载流子收集能力有助于提升JSC。HSC宽度与PCE的关系:功率转换效率(PCE)随着HSC宽度的增加而提高,但存在一个最佳点,超过这个宽度后效率会开始下降。

ce7d4518-a1e1-11ef-8084-92fbcf53809c.png

短路电流:三种情况下的JSC都接近42.5 mA cm-2,表明光生电流密度在不同设计间保持一致。

开路电压:使用纳米晶硅(nc-Si:H)HSC的电池展现出比非晶硅(a-Si:H)HSC的电池更高的VOC。将间隙宽度从80微米减少到20微米,进一步略微提高了使用nc-Si:H HSC的电池的VOC。

填充因子:使用nc-Si:H HSC的电池展现出比使用a-Si:H HSC的电池更高的FF。减少间隙宽度进一步提高了使用nc-Si:H HSC的电池的FF。功率转换效率:使用a-Si:H HSC的电池的PCE为27.01%。使用nc-Si:H HSC的电池的PCE为27.38%。将间隙宽度从80微米减少到20微米,将使用nc-Si:H HSC的电池的PCE提高到27.51%。通过创建高效硅异质结(SHJ)太阳能电池的数字孪生模型,评估了 SHJ - IBC太阳能电池的实际效率极限,SHJ - IBC 电池采用非晶 HSC 效率可达 27.01%纳米晶 HSC 时可达 27.38%,将间隙宽度从80μm减至20μm可使效率提升至27.51%

美能晶化率测试仪

ce8d4f4e-a1e1-11ef-8084-92fbcf53809c.png

美能晶化率测试仪拥有极佳的紫外灵敏度和优异的光谱重复性。采用325激光器,同时优化紫外光路设计,提高光谱稳定性,高效率利用325激光与样品拉曼信号,实现了5nm以上非晶/微晶材料的原位测试,是表征"微晶一异质结"电池的最优选择。

  • 行业最佳,紫外灵敏度硅一阶峰的信号计数优于1000(1秒积分时间)
  • 光谱重复性:单晶硅校准后,≤520±0.02cm-1
  • 光栅刻线数:≤2400 gr/mm;≤1800 gr/mm

随着非晶/微晶材料在HBC太阳能电池中的关键作用日益凸显,美能晶化率测试仪以其卓越的紫外灵敏度光谱重复性,成为了这一领域不可或缺的工具。该测试仪采用的325纳米激光器和优化的紫外光路设计,不仅提高了光谱稳定性,还实现了对5nm以上非晶/微晶材料的原位测试,为“微晶-异质结”电池的表征提供了强有力的技术支持。

原文出处:Evaluating the Practical Efficiency Limit of Silicon Heterojunction–Interdigitated Back Contact Solar Cells by Creating Digital Twins of Silicon Heterojunction Solar Cells with Amorphous Silicon and Nanocrystalline Silicon HoleContact Layers

*特别声明:「美能光伏」公众号所发布的原创及转载文章,仅用于学术分享和传递光伏行业相关信息。未经授权,不得抄袭、篡改、引用、转载等侵犯本公众号相关权益的行为。内容仅供参考,若有侵权,请及时联系我司进行删除。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 太阳能电池
    +关注

    关注

    22

    文章

    1267

    浏览量

    72998
  • ESC
    ESC
    +关注

    关注

    0

    文章

    63

    浏览量

    18102
  • IBC
    IBC
    +关注

    关注

    0

    文章

    21

    浏览量

    2145
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    维度网|有机太阳能电池手性材料研究取得进展,光伏效率大幅提升

    该有机太阳能电池技术通过手性诱导自旋选择效应,产生自旋极化电流促进电荷分离。资深作者佐伯明典指出:"这种效应非常有趣,因为自旋极化更好地分离电子和空穴,从而减少电荷复合。"分子结构对称性调控为有机太阳能电池
    的头像 发表于 12-01 16:19 310次阅读
    维度网|有机<b class='flag-5'>太阳能电池</b>手性<b class='flag-5'>材料</b>研究取得进展,光伏<b class='flag-5'>效率</b>大幅提升

    350cm²商用TBC太阳能电池效率创27.03%世界纪录

    光伏产业的高效可持续发展需同步提升电池效率与美观性。背接触(BC)硅太阳能电池凭借无前栅线结构,兼具高理论效率(29.2%)和美学优势,但低双面率(80%,为BC技术产业化扫除关键障碍
    的头像 发表于 08-11 09:02 998次阅读
    350cm²商用TBC<b class='flag-5'>太阳能电池</b><b class='flag-5'>效率</b>创27.03%世界纪录

    JCMsuite应用:太阳能电池的抗反射惠更斯超表面模拟

    人们构想大量不同的策略来替代随机纹理,用来改善太阳能电池中的光耦合效率。虽然对纳米光子系统的理解不断深入,但由于缺乏可扩展性,只有少数提出的设计工业被上接受。本应用中,一种定制的无
    发表于 06-17 08:58

    突破25%效率壁垒:钙钛矿太阳能电池中光伏参数的多维度协同优化

    钙钛矿太阳能电池(PSCs)MillennialSolar效率与稳定性:钙钛矿太阳能电池因其高效率(超过25%)和潜在的商业化前景而受到关注。其效率
    的头像 发表于 04-07 09:05 1929次阅读
    突破25%<b class='flag-5'>效率</b>壁垒:钙钛矿<b class='flag-5'>太阳能电池中</b>光伏参数的多维度协同优化

    背接触(BC)太阳能电池组件封装损失研究:从材料选择到工艺优化

    本文研究了背接触(BC)太阳能电池组件封装过程中的电池到组件(CTM)比率,这是光伏行业中一个创新且日益重要的研究焦点。通过比较双面电池和背接触
    的头像 发表于 03-24 09:02 2078次阅读
    背接触(BC)<b class='flag-5'>太阳能电池</b>组件封装损失研究:从<b class='flag-5'>材料</b>选择到工艺优化

    TOPCon太阳能电池UV辐照下的电性能衰减与恢复机制研究

    能力,减少光电转换效率的衰减。本文针对TOPCon太阳能电池不同UV辐照条件下的电性能衰减特性进行研究,并对提高此类太阳能电池抗UV辐照的方式进行分析。通过美
    的头像 发表于 03-07 09:01 2243次阅读
    TOPCon<b class='flag-5'>太阳能电池</b><b class='flag-5'>在</b>UV辐照下的电性能衰减与恢复机制研究

    JCMsuite应用:太阳能电池的抗反射惠更斯超表面模拟

    人们构想大量不同的策略来替代随机纹理,用来改善太阳能电池中的光耦合效率。虽然对纳米光子系统的理解不断深入,但由于缺乏可扩展性,只有少数提出的设计工业被上接受。本应用中,一种定制的无
    发表于 03-05 08:57

    吉时利数字源表太阳能电池测试

    全球能源转型的大潮中,太阳能作为一种清洁、可再生的能源,越来越受到各国**和企业的重视。随着太阳能发电技术的不断发展,太阳能电池效率也得
    的头像 发表于 02-20 16:58 625次阅读
    吉时利数字源表<b class='flag-5'>太阳能电池</b>测试

    科能源荣登2025年全球太阳能组件制造商排名榜首

    近日,国际权威能源咨询机构伍德麦肯兹(Wood Mackenzie)发布了《全球太阳能组件制造商排名2025》。截止2024年上半年,凭借卓越的技术实力和高效的组件性能,科能源全球太阳能电
    的头像 发表于 01-24 17:09 3718次阅读

    效率突破30.22%,通过优化HTL和采用SHJ底部电池实现钙钛矿/硅叠层太阳能电池性能提升

    钙钛矿/硅叠层太阳能电池中,使用硅异质结(SHJ)太阳能电池作为底部电池是实现高效率的最有前景的方法之一。目前,大多数高效叠层
    的头像 发表于 01-17 09:03 1689次阅读
    <b class='flag-5'>效率</b>突破30.22%,通过优化HTL和采用SHJ底部<b class='flag-5'>电池</b>实现钙钛矿/硅叠层<b class='flag-5'>太阳能电池</b>性能提升

    钙钛矿太阳能电池超薄膜厚度测量应用

    钙钛矿材料因其优异的光电特性,近年来一直受到高度关注。相应的钙钛矿太阳能电池柔性太阳能电池领域和叠层太阳能电池领域也有广泛应用前景。
    的头像 发表于 01-10 15:27 1876次阅读
    钙钛矿<b class='flag-5'>太阳能电池</b>超薄膜厚度测量应用

    太阳能电池中的应用分析

    作为一种重要的半导体材料提高太阳能电池效率方面发挥着重要作用。 1. 镓的基本特性 镓是一种柔软、银白色的金属,具有低熔点(29.76°C)和高沸点(2204°C)。它在自然界中以
    的头像 发表于 01-06 15:10 1411次阅读

    改进丝网印刷工艺,太阳能电池正面银电极金属化效率高达22.1%

    传统的平面丝网印刷是大规模生产太阳能电池的主要金属化方法,因其生产能力强和成本效益高。光伏行业要求进一步减小印刷银电极(接触指)的宽度,需要新的优化。使用细线丝网(屏幕开口宽度低至15μm)对
    的头像 发表于 12-27 09:03 1792次阅读
    改进丝网印刷工艺,<b class='flag-5'>晶</b>硅<b class='flag-5'>太阳能电池</b>正面银电极金属化<b class='flag-5'>效率</b>高达22.1%

    认证效率高达33.10%,基于宽带隙表面重构技术实现高效钙钛矿/硅串联太阳能电池

    结晶度表面,最终实现了认证效率33.10%的四端钙钛矿/硅叠层太阳能电池。钙钛矿太阳能电池的制备基底清洗和预处理:ITO玻璃基底首先用洗涤剂溶液清洗,然后依次用去离
    的头像 发表于 12-18 09:03 1292次阅读
    认证<b class='flag-5'>效率</b>高达33.10%,基于宽带隙表面重构技术实现高效钙钛矿/硅串联<b class='flag-5'>太阳能电池</b>

    15.8% PCE与20% AVT,全背接触中性色透明晶体硅太阳能电池,实现无缝模块化

    (ABC)中性色透明太阳能电池及无缝透明太阳能模块的开发,旨在突破现有技术限制,为透明太阳能技术的发展开辟新路径。ABCc-SiTSCs的光电转换
    的头像 发表于 12-16 09:03 940次阅读
    15.8% PCE与20% AVT,全背接触中性色透明晶体硅<b class='flag-5'>太阳能电池</b>,实现无缝模块化