0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度神经网络变革发展迅速正对半导体IC设计与制造形成深刻的变革

lOsp_gh_4459220 2018-02-03 09:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近年业界在深度神经网络(DNN)技术发展上进展迅速,正对半导体IC设计与制造形成深刻的变革,2018年全球首款商用化DNN专用芯片将开始出货,或成为至今价格最高且最大的商用芯片,外界预期2018年将成为这类芯片相继问世的一年,而过去几年DNN技术开发的兴起,也带动创投资金重回半导体产业,可见近来基于新架构的新创企业数量大增、达15家以上,这在过去10~15年来在单一产业领域未曾见过的景象。

据EE Times报导,预计2018年可能见到如英特尔(Intel)收购的2.5D Nervana芯片已在送样,还有10多个处理器正在开发中,其它如人工智能(AI)新创企业Graphcore及其竞争对手Cerebras Systems均可望推出自有芯片产品,威腾(WD)与安谋(ARM)等几家芯片业者也在开发自有核心,用以加速深度神经网络的推论部分。

市场研究机构The Linley Group负责人Linley Gwennap指出,NVIDIA在其最新绘图芯片(GPU)「Volta」开发上表现非常出色,调整用于加速DNN训练,不过Gwennap不认为这是最好的设计。

在训练芯片方面,英国Graphcore及美国加州Cerebras被视为是值得关注的公司,因拥有最好的团队且募得最多资金。由Google前芯片设计师创立的新创企业Groq计划于2018年推出一款推论芯片,宣称在每秒整体操作及推论效能表现上,比竞争对手高出4倍。

代号「Lake Crest」的英特尔Nervana芯片则为一大值得关注的客制化设计,与NVIDIA Volta相似的是,Lake Crest逻辑元件位在台积电CoWoS中介层中,与4个HBM2高带宽存储器堆叠相邻,这些芯片也被设计成网状,提供比Volta高出5~10倍的效能表现。

虽然这类AI芯片将问世,不过芯片架构师仍未决定应如何进行评估。加州大学柏克莱分校荣誉教授David Patterson指出,过去RISC供应商在SPEC基准测试上进行合作,如今DNN加速器需要自行定义的测试套件,涵盖一系列资料类型的训练、推论以及独立且丛集的芯片。

因此由超过20家主要伺服器及软件制造商组成的服务器效能评测标准组织(TPC),于2017年12月12日宣布已组成工作团队,来定义机器学习的硬件及软件基准,TPC-AI委员会主席Raghu Nambiar指出,目标是要创建不论是以中央处理器(CPU)或GPU做为加速器都适用的测试。

基准测试之外,工程师还需要追踪仍在演化的神经网络算法,以确保其设计能获得采用。高通(Qualcomm)下一代核心研发主任Karam Chatha表示,由于硬件将对软件形成影响,在软件总是在变化下,有及早推出硬件的必要性,至今行动芯片供应商在其Snapdragon系统单芯片(SoC)的DSP及GPU核心上的软件运行神经网络任务,不过部分观察家预期,高通将为2019年版7纳米Snapdragon SoC客制化一款全新机器学习芯片。

随着算法持续演进,研究人员也在扩大深度学习的应用面向,包括导入芯片设计及制造端,如英特尔汇整出超过40多项可能的用途领域,如华尔街采用的自动化交易程序及消费者在线消费助理等应用领域等。

另外,近期可见关于神经网络软件技术的融合努力,如由Facebook与微软(Microsoft)开启的开放源计划「开放神经网络交换」(QNNX)格式,有助将所创造的神经网络模型转换成图形(graphical)呈现方式,芯片制造商则能在最终图形上锁定期硬件,这对无法自行编写软件支持运算模式架构的新创企业如亚马逊(Amazon)旗下MxNet、Google的TensorFlow、Facebook的Caffe2及微软CNTK来说,自然是一好消息。

另由30多家主要芯片供应商组成的团体,也发布其「神经网络交换格式」(NNEF),旨在提供芯片制造商可创建自有内部格式的替代解决方案,好比是NVIDIA的TensorRT及英特尔的Nervana Graph。

展望这类AI芯片发展前景,以半导体产业来看,Patterson指出,随着英特尔、Graphcore及NVIDIA已开发出全标线(full-reticle)芯片,下一阶段则是发展3D技术,过去在摩尔定律(Moore’s Law)发展火红时,基于忧心可靠性及成本问题,导致较复杂的封装技术无法获得采用青睐,但如今摩尔定律终止在即,将可在封装技术上看到许多试验在进行。最终是可开创出新形态的晶体管,可在逻辑与存储器层上进行On-Die堆叠。美国电子工程学界人士认为,负电容铁电晶体管技术或可能成为上述芯片技术的基础,与3D NAND相同的是均采On-Die堆叠技术。

另外,美国麻省理工学院(MIT)、柏克莱大学(UC Berkeley)与史丹佛大学(Stanford University)组成的学术团队,也将于2月国际固态电路会议(ISSCC)上发表类似技术的先进芯片架构,是将ReRAM结构及碳纳米管制成的逻辑元件堆叠于芯片中,此技术灵感来自于DNN、且被程序设计为近似模式,而非至今计算机采用过的确定性数字,这类芯片可从案例中进行学习,比传统的系统所需操作要少得多,测试版芯片不久后将送交制造。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    336

    文章

    29999

    浏览量

    258451
  • IC
    IC
    +关注

    关注

    36

    文章

    6267

    浏览量

    184293
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106807

原文标题:【IC设计】深度神经网络变革 引发AI芯片新混战

文章出处:【微信号:gh_44592200c847,微信公众号:gh_44592200c847】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 708次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 892次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    特瑞仕与极特半导体合作推动电源管理IC发展

    近年来,全球半导体行业正经历深刻变革,地缘政治等因素加速供应链本土化趋势,欧洲三大家半导体企业也在积极推进中国本地化进程。
    的头像 发表于 08-21 09:18 819次阅读

    AI驱动半导体测试变革:从数据挑战到全生命周期优化

    FablessSolutions副总裁Dr.MingZhang在TestConX2025大会上分享了以《测试AI:半导体制造的新前沿》为主题的演讲。他以“学习、探索、分享”为基调,结合行业变革趋势
    的头像 发表于 08-19 13:49 772次阅读
    AI驱动<b class='flag-5'>半导体</b>测试<b class='flag-5'>变革</b>:从数据挑战到全生命周期优化

    表面贴装技术(SMT):推动电子制造变革

    。电子元件的发展、集成电路的开发以及半导体材料的多元应用,也为SMT技术的广泛应用提供了技术支持。最后,电子科技革命的推进和国际潮流的引领,使得SMT技术成为电子制造行业的必然选择。 随着SMT技术
    发表于 03-25 20:55

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1324次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1597次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、
    的头像 发表于 02-12 15:15 1358次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1529次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,
    的头像 发表于 01-23 13:52 848次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2263次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    ANN神经网络——器件建模

    随着半导体行业的新材料、新工艺、新器件的不断发展,人工神经网络作为一种替代方法已经被引入器件建模领域。本文介绍了ANN神经网络建模的起源、优势、实现方式和应用场景。   随着
    的头像 发表于 01-06 13:41 1673次阅读
    ANN<b class='flag-5'>神经网络</b>——器件建模

    【「大话芯片制造」阅读体验】+内容概述,适读人群

    在这个数字化时代,半导体芯片已经成为推动技术进步的核心。菊地正典先生的《大话芯片制造》不仅是一本技术书籍,更是一次深入芯片制造世界的奇妙之旅。作为一名对半导体技术充满好奇的读者,我在
    发表于 12-21 16:32