0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络计算公式

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

神经网络计算公式

神经网络是一种类似于人脑的神经系统的计算模型,它是一种可以用来进行模式识别、分类、预测等任务的强大工具。在深度学习领域,深度神经网络已成为最为重要的算法之一。在本文中,我们将重点介绍如何积极神经网络计算公式,以及如何使用这些公式来搭建深度神经网络。

1. 基础计算公式

在神经网络中,最基本的计算公式是前向传递计算。在这种计算中,网络按照输入数据从输入层到输出层依次通过每一个层,每一层都向下传递一组权重矩阵和一个偏差向量,这些矩阵和向量可以通过反向传播来进行更新优化。

(1) 前向传递:

该公式表示了计算输入x通过网络后得到的结果y的方法。其中,Wi表示第i层权重矩阵,bi表示第i层偏差向量。f(·)表示激活函数,其是神经网络非线性关系的建立者。

(2) 反向传播:

反向传播是神经网络训练时用到的一种优化算法,它是通过最小化损失函数来更新权重和偏差的矩阵和向量。对于每一层神经元的激活情况,都可以计算出其误差项,然后通过误差反向传递求出该层的权重和偏差的梯度,使其朝着让损失函数减小的方向进行更新。

其中,δi为第i层误差项,σ'(·)表示激活函数f(·)的求导函数,T表示矩阵的转置。这个求导过程是计算梯度的关键所在,误差项的计算公式也是神经网络中的关键内容之一。

2. 线性计算和非线性计算

在神经网络中,每一层计算都由一些线性变换和非线性变换组成。

(1) 线性变换:

线性变换是指通过权重矩阵和偏差向量对输入数据进行的简单线性组合运算,用于对输入数据空间进行映射。

其中,W为权重矩阵,b为偏差向量,x为输入数据,y为输出数据。

(2) 非线性变换:

为了更好地拟合和理解非线性关系,人们引入了非线性变换,其中Sigmoid、ReLU等激活函数是深度学习中使用最广泛的激活函数。如下图所示:

其中Sigmoid函数的公式为:

ReLU函数的公式为:

3. Dropout计算

Dropout是一种有效的防止过拟合的方法。当一个神经网络太复杂以至于它学习了训练数据,但却不能泛化到新数据时,就会发生过拟合。Dropout算法会在神经网络的每一层上随机断开一些神经元的连接,并以一定的概率来保持每个神经元的连接不变,这样可以使网络变得更加鲁棒,防止过拟合。

公式如下:

其中,m为随机删减的神经元数量,p为随机删减神经元的概率,W和b是本层权重矩阵和偏差向量,x是输入数据,y是输出数据。

4. Batch Norm计算

Batch Norm是一种常用的归一化方法,它的作用是将网络中的每一层的输出值进行标准化,让它们更加服从正态分布。这种标准化可以加速神经网络的训练速度,同时也有助于防止梯度消失和梯度爆炸。

Batch Norm的公式如下:

其中,μ表示批量标准化中的均值,σ表示批量标准化中的标准差,ϑ是用来调整归一化范围的参数,ε是一个极小的常数,以防止分母为零。公式中的γ和β是可学习的参数,它们用来调整网络输出值的比例和偏置。

5. 卷积计算

卷积计算是一种非常重要的神经网络计算方式,它广泛应用于计算机视觉、自然语言处理等领域。卷积计算通过将核函数按照一定步长和方向在输入数据上进行滑动,从而计算出一组卷积结果,从而实现对输入数据的变换和提取特征。

卷积计算的关键是计算卷积核与输入层之间的点积。在卷积计算中,卷积核是一个矩阵,表示一组可学习的卷积参数;而输入数据则是一个二维矩阵,表示图像或文本的原始特征。

卷积计算的公式如下:

其中,W为卷积核矩阵,b为偏差向量,表示卷积核对输入数据进行卷积变换后的结果。i和j分别表示第i行和第j列元素,k和l分别表示卷积核的行和列坐标。stride表示卷积操作时移动的步长。

6. 池化计算

池化是一种简单而有效的卷积特征降维方法,可以应用在神经网络的全连接层之前,减少网络参数并且能够改善模型测试的准确度。

池化操作可以分为Max Pooling和Average Pooling两种方式。其中Max Pooling是通过对输入数据的不同区域内的数值进行比较,然后将每个区域内的最大值作为输出结果。而Average Pooling则是对输入数据的不同区域进行取平均操作。

池化计算的公式如下:

其中,σ为池化方式,k表示池化窗口的大小,stride为池化操作时移动的步长,原始输入矩阵为X,池化后的结果为Y。

7. Skeletonization计算

Skeletonization是一种常用于图像处理领域的算法,可以用于将复杂的图像转化为一些简单的骨架形式,方便进行后续处理和分析。

Skeletonization算法计算公式如下:

其中,X表示原始输入图像,M表示骨架化后的结果。此公式的思路是不断将图像中的最外层轮廓进行拓扑处理,使其成为单像素线条的骨架形式,直到整个图像被转化为一个一维的骨架。Skeletonization算法在人脑皮层分析等许多领域都有着广泛的应用。

8. 总结

本文详细介绍了神经网络中的各种计算公式,包括前向传递、反向传播、线性和非线性变换、Dropout、Batch Norm、卷积计算、池化计算以及Skeletonization的计算方法。这些公式是深度神经网络训练和优化的关键所在,理解这些公式及其实现方法对于掌握深度学习算法是非常必要的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像处理中尤其常见,因为图像本身就可以看作是由像
    的头像 发表于 11-19 18:15 1826次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x&gt;0 时,梯度恒为1,无梯度耗散问题,收敛快;当x&lt;0 时,该层的输出为0。 CNN
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能
    发表于 10-29 06:08

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第一层卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、
    的头像 发表于 09-17 13:31 878次阅读
    <b class='flag-5'>神经网络</b>的并行<b class='flag-5'>计算</b>与加速技术

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    自动驾驶感知系统中卷积神经网络原理的疑点分析

    背景 卷积神经网络(Convolutional Neural Networks, CNN)的核心技术主要包括以下几个方面:局部连接、权值共享、多卷积核以及池化。这些技术共同作用,使得CNN在图像
    的头像 发表于 04-07 09:15 639次阅读
    自动驾驶感知系统中<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>原理的疑点分析

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不进行任何
    的头像 发表于 02-12 16:41 1248次阅读

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 1301次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1562次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络的学习算法。该算法通过计算每层网络的误差,并将这
    的头像 发表于 02-12 15:18 1269次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1338次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2235次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法